
www.manaraa.com

(1) THE CASE FOR USING FOREIGN LANGUAGE PEDAGOGIES IN

INTRODUCTORY COMPUTER PROGRAMMING INSTRUCTION

(2) A CONTEXTUALIZED PRE-AP COMPUTER PROGRAMMING

CURRICULUM: MODELS AND SIMULATIONS FOR EXPLORING

REAL-WORLD CROSS-CURRICULAR TOPICS

A Thesis and Project Report

Presented to

The Faculty of the Departments of Computer Science

and

Division of Curriculum and Instruction

California State University, Los Angeles

In Partial Fulfillment of the Requirements for the Degree

Master of Science

in

Interdisciplinary Studies: Computer Science Curriculum and Pedagogy

By

Scott R. Portnoff

June 2016

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

ProQuest 10132126

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

ProQuest Number: 10132126

www.manaraa.com

 ii

© 2016

Scott R. Portnoff

ALL RIGHTS RESERVED

www.manaraa.com

 iii

The thesis of Scott R. Portnoff is approved.

Russell J. Abbott, Committee Chair

Raj S. Pamula

Chogollah Maroufi

Robert E. Land

Karin E. Brown, Dean of Graduate Studies

California State University, Los Angeles

June 2016

www.manaraa.com

 iv

ABSTRACT

(1) The Case for Using Foreign Language Pedagogies in

Introductory Computer Programming Instruction

(2) A Contextualized pre-AP Computer Programming Curriculum:

Models and Simulations for Exploring Real-World Cross-Curricular Topics

By

Scott R. Portnoff

Large numbers of novice programmers have been failing postsecondary

introductory computer science programming (CS1) courses for nearly four decades.

Student learning is much worse in secondary programming courses of similar or even

lesser rigor. This has critical implications for efforts to reclassify Computer Science (CS)

as a core secondary subject. State departments of education have little incentive to do so

until it can be demonstrated that most grade-level students will not only pass such

classes, but will be well-prepared to succeed in subsequent vertically aligned coursework.

One rarely considered cause for such massive failure is insufficient pedagogic

attention to teaching a programming language (PL) as a language, per se. Students who

struggle with acquiring proficiency in using a PL can be likened to students who flounder

in a French class due to a poor grasp of the language's syntactic or semantic features.

Though natural languages (NL) and PLs differ in many key respects, a recently reported

(2014) fMRI study has demonstrated that comprehension of computer programs primarily

utilizes regions of the brain involved in language processing, not math. The implications

www.manaraa.com

 v

for CS pedagogy are that, if PLs are learned in ways fundamentally similar to how second

languages (L2) are acquired, foreign language pedagogies (FLP) and second language

acquisition (SLA) theories can be key sources for informing the crafting of effective PL

teaching strategies.

In this regard, key features of contemporary L2 pedagogies relevant to effective

PL instruction – reflecting the late 20
th

-century shift in emphasis from cognitive learning

that stressed grammatical knowledge, to one that facilitates communication and practical

uses of the language – are: (1) repetitive and comprehensible input in a variety of

contexts, and (2) motivated, meaningful communication and interaction.

Informed by these principles, four language-based strategies adapted for PL

instruction are described, the first to help students acquire syntax and three others for

learning semantics: (a) memorization; (b) setting components in relief;

(c) transformations; and (d) ongoing exposure.

Anecdotal observations in my classroom have long indicated that memorization of

small programs and program fragments can immediately and drastically reduce the

occurrence of syntax errors among novice pre-AP Java programming students. A modest

first experiment attempting to confirm the effect was statistically unconvincing: for

students most likely to struggle, the Pearson coefficient of -0.474 (p < 0.064) suggested a

low-modest inverse correlation. A follow-up study will be better designed. Still, a

possible explanation for the anecdotal phenomenon is that the repetition required for

proficient memorization activates the same subconscious language acquisition processes

that construct NL grammars when learners are exposed to language data.

www.manaraa.com

 vi

Dismal retention rates subsequent to the introductory programming course have

historically also been a persistent problem. One key factor impacting attrition is a

student's intrinsic motivation, which is shaped both by interest in, and self-efficacy with

regards to, the subject matter. Interest involves not just CS concepts, but also context, the

domains used to illustrate how one can apply those concepts. One way to tap into a wide

range of student interests is to demonstrate the capacity of CS to explore, model, simulate

and solve non-trivial problems in domains across the academic spectrum, fields that

students already value and whose basic concepts they already understand.

An original University of California "G" elective (UCOP "a-g" approved) pre-AP

programming course along these principles is described. In this graphics-based

Processing course, students are guided through the process of writing and studying small

dynamic art programs, progressing to mid-size graphics programs that model or simulate

real-world problems and phenomena in geography, biology, political science and

astronomy. The contextualized course content combined with the language-specific

strategies outlined above address both interest and self-efficacy. Although anecdotally

these appear to have a positive effect on student understanding and retention, studies need

to be done on a larger scale to validate these outcomes.

Finally, a critique is offered of the movement to replace rigorous secondary

programming instruction with survey courses – particularly Exploring Computer Science

and APCS Principles – under the guise of "democratizing" secondary CS education or to

address the severe and persistent demographic disparities. This group of educators has

promulgated a nonsensical fiction that programming is simply one of many sub-

disciplines of the field, rather than the core skill needed to understand all other CS topics

www.manaraa.com

 vii

in any deep and meaningful way. These courses present a facade of mitigating

demographic disparities, but leave participants no better prepared for subsequent CS

study.

www.manaraa.com

 viii

DEDICATION

This thesis is dedicated to my husband of 29 years, Albert Joseph Winn, who

passed away in the midst of my studies. Born July 9, 1947, Al was an accomplished

artist, photographer, teacher and storyteller/writer. He was a devoted spouse, who

encouraged me throughout this endeavor even as he dealt with illness in his final year.

He was an enthusiastic uncle, son, brother, brother-in-law and dear friend, missed now by

many, many more people than just myself. Not to mention how doggedly he cared for

each of our many pets. He died on May 20, 2014 of complications from neuroendocrine

carcinoma. Portions of his work may be viewed at AlbertJWinn.com.

www.manaraa.com

 ix

TABLE OF CONTENTS

Abstract .. iv

Dedication .. viii

List of Tables .. xii

List of Figures .. xiii

List of Abbreviations ...xv

Part 1. The Case for Using Foreign Language Pedagogies in Introductory

Computer Programming Instruction ...1

 Chapter 1. The Efficacy of Memorization on Learning

 Programming Language Syntax ...2

 Section 1. Introduction ..2

 Section 2. Methods and Implementation ..5

 Section 3. Results and Evaluation ...11

 Chapter 2. Teaching CS Using a Second Language Pedagogic Paradigm19

 Section 1. The Anti-Programming Interest Group (APIG):

 Abandoning Novice Programmers ..19

 Section 2. Technological Innovation is Not Pedagogic Innovation37

 Section 3. SLA Theories and Programming Languages 42

 Subsection 1. Theoretical Considerations for Using a

 SLA Model in CS Instruction ..42

 Subsection 2. A Review of SLA Theories

 Pertinent to Programming Languages ..49

 Subsection 3. Deaf ESL Learners ..62

 Subsection 4. The Role of Context ..65

www.manaraa.com

 x

 Subsection 5. Neurocognitive and fMRI Studies68

 Section 4. SLA Instructional Strategies for Computer Programming72

 Subsection 1. Syntax: Memorization ...73

 Subsection 2. Semantics: Setting Components in Relief79

 Subsection 3. Semantics: Revealing Underlying

 Transformational Structure ..83

 Subsection 4. Semantics: for-loop Transformations86

 Subsection 5. Semantics: Ongoing Exposure ..97

 Subsection 6. Summary ...100

Part 2. A Contextualized pre-AP Computer Programming Curriculum: Models

 and Simulations for Exploring Real-World Cross-Curricular Topics ...102

 Chapter 1. Contextualization in CS Education ...103

 Section 1. Introduction ..103

 Section 2. Contextualization Efforts in CS Education108

 Section 3. Potential Impact on Institutional Change114

 Section 4. Core Computing Concepts and Computational Competencies116

 Section 5. Broadening Participation ...119

 Section 6. Principles for Implementation..126

 Chapter 2. The Course Outline for CPRWE: Computer Programming as if

 the Rest of the World Existed ...136

 Section 1. Introduction ..136

 Section 2. Piet Mondrian Painting ..139

 Section 3. Ricocheting Comets ...142

www.manaraa.com

 xi

 Section 4. Rotating McClure Painting ..148

 Section 5. Word Clouds ..153

 Section 6. CodingBat: Boolean logic, Strings and Arrays158

 Section 7. Nested For-Loops, Regular Patterns, and T-Tables164

 Section 8. The Right to Vote...167

 Section 9. Around the World in 24 Days ..172

 Section 10. Galileo's Revolution and Astronomy ...178

 Section 11. Molecular Modeling and DNA ..185

References ..192

Appendices

 A. A Critique of the ECS Curriculum ...211

 B. The Influence of the APIG on CSTA Policy..225

 C. The APIG's Impact on CSTA's Curricular Framework......................................228

 D. The APIG Fallacies of Computer-Free CS Instruction236

 E. Differences between Natural and Programming Languages240

www.manaraa.com

 xii

LIST OF TABLES

1. Experimental Results ...11

2. Assignment to Memorization/Control Group as Independent Variable,

 Pearson Coefficients and (2-tailed) p-values ...12

3. CSP Composite Score as Independent Variable,

 Pearson Coefficients and (2-tailed) p-values ...16

www.manaraa.com

 xiii

LIST OF FIGURES

1A. Case Study Program Code (CSP) and Translation ...6

1B. Case Study Program (CSP) Output ...7

2. Novel Assessment Program (NAP) Instructions and Output8

3. Novel Assessment Program (NAP) Optimal Solution ...8

4. Top: What instructors imagine students see.

 Bottom: What students might as well be seeing. ...15

5. Non-Gifted Subgroup: CSPCS scores vs. NAP#SE ..17

6. rotateLeft3() instructional code and diagram ...54

7. rotateRight3() direction error ...55

8. Output and Detail of Starter Code for Piet Mondrian Painting74

9. Surface Syntax. Constructor Call Arguments →

 Assignment of Values to Constructor Parameters ...84

10. Transformational Model: Positing Intermediate Structures that clarify both

(a) assignment of argument values to parameters and (b) how parameters

behave like local variables ...84

11. Concentric Squares. Left: Desired Output.

 Right: Red Lines to help with calculations ..87

12. CS Gender Performance Gap, 2004-2015 ...120

13. %Female vs. Number of STEM Test Takers, 2015 ...121

14. %Female vs. Total Number of APCS Test Takers, 2004-2015122

15A. East bound traveler is just to the west of the sector at Time 1176

15B. East has moved just to the east of the next sector at Time 2. No sunrise is

detected! ...176

www.manaraa.com

 xiv

16A. West bound traveler is at the west edge of the sector at Time 1. A sunrise event

is detected...177

16B. West has moved to the east edge of the next sector at Time 2. A 2nd sunrise

event is detected!..177

17A. East bound traveler is to the west of the widened sector at Time 1. No change in

behavior..177

17B. East is within the widened sector at its east edge at Time 2. A sunrise event is

now detected! ...177

18A. West bound traveler is at the west edge of the narrowed sector at Time 1. A

sunrise event is detected...177

18B. West is now just outside the east edge of the next sector at Time 2, because the

sector has been narrowed at this end. No 2nd sunrise event is detected!177

19. Derivation of Additive Trigonometric Identities ...190

20. Derivation of Formulas for Calculating New Coordinates after Rotation about the

Origin ...190

www.manaraa.com

 xv

LIST OF ABBREVIATIONS

ACM Association for Computing Machinery

API Application Program Interface

APIG Anti-Programming Interest Group

APCS Advanced Placement Computer Science

ASL American Sign Language

CL Computer Literacy

CPRWE Computer Programming as if the Rest of the World Existed

CS Computer Science

CS0 College-level pre-Introductory Computer Science

CS1 College-level Introductory Computer Science

CSEA Computer Science Equity Alliance

CSP Case Study Program

CSPCS Case Study Program Composite Score

CSP#SE Case Study Program Number of Syntax Errors

CSS Cascading Style Sheets

CSTA Computer Science Teachers Association

CT Computational Thinking

ECS Exploring Computer Science

ESL English as a Second Language

FLP Foreign Language Pedagogy

fMRI Functional Magnetic Resonance Imaging

G Gifted

www.manaraa.com

 xvi

HTML HyperText Markup Language

IDE Integrated Development Environment

IT Information Technology

LAD Language Acquisition Device

LAUSD Los Angeles Unified School District

L1 First (native) Language

L2 Second (non-native) Language

NAP Novel Assessment Program

NAP CS Novel Assessment Program Composite Score

NAP #SE Novel Assessment Program Number of Syntax Errors

NG Non-Gifted

NSF National Science Foundation

NL Natural Language

OO Object-Oriented

PL Programming Language

PLTW Project Lead the Way

RGB Red Green Blue (color values)

SIGCSE Special Interest Group: Computer Science Education

SLA Second Language Acquisition

SMC Subject Matter Competent

STEM Science, Technology, Engineering & Math

UCOP University of California Office of the President

URM (Traditionally) Under-Represented Minority

www.manaraa.com

 1

PART 1

THE CASE FOR USING

FOREIGN LANGUAGE PEDAGOGIES IN

INTRODUCTORY COMPUTER PROGRAMMING INSTRUCTION

www.manaraa.com

 2

CHAPTER 1.

THE EFFICACY OF MEMORIZATION

ON LEARNING PROGRAMMING LANGUAGE SYNTAX

Section 1. Introduction

It would be disingenuous to say that the difficulty experienced by large numbers

of novice programmers is a crisis; rather it is a long-time, defective feature of first

programming courses in a CS curriculum. The literature has been documenting the

failure of such students to acquire proficiency in the skills and concepts taught in

secondary and postsecondary introductory CS programming courses for nearly four

decades (Bennedsen & Caspersen, 2007) (Watson & Li, 2014) (Lahtinen, AlaMutka, &

Järvinen, 2005) (McGettrick, et al., 2005). It is also a constant that enrollments in

secondary AP CS courses are skewed demographically more so than for any other AP

subject, and that absolute numbers for such enrollments are currently 4-6 times lower

than for AP Calculus, AP Statistics or AP Biology (College Board, 2015). Attempts

during the preceding decade at remedying any part of this status quo – such as

contextualization (e.g. robotics) and drag-and-drop programming interfaces within self-

contained 2-D and 3-D worlds (Scratch, Alice) – have failed to move the needle

(Kelleher & Pausch, 2005).

Researchers have occasionally looked for predictors of success, considering, for

example, such student characteristics as the ability to abstract (Bennedsen & Caspersen,

2008). Correlations have not been found. Extra tutoring and long hours in the lab have

yielded inconsistent and weak claims of success for only a portion of failing students

(Azemi & D’Imperio, 2011). Such interventions also have given no insights into

www.manaraa.com

 3

understanding why students fail. In the absence of any remedies, many educators have

asserted that students who are otherwise intelligent or successful in other subjects, but

who fail in CS, lack innate talent, perseverance or some other enigmatic quality.

Ascribing fixed mindsets to such students – that they simply have low ability in this

particular subject area – conveniently allows educators to let themselves off the hook in

terms of reflecting on their own teaching practice, in particular that their teaching may be

contributing to these outcomes.

Retention of students in the discipline is also problematic, as attrition rates are

high for all but the so-called "high-fliers". A very few elite postsecondary institutions

that educate talented and privileged students have employed social support strategies to

increase this different, but related, issue (Alvarado & Dodds, 2010). It is unlikely,

though, that these interventions can be replicated at the secondary level outside of an

extra-curricular computer club setting.

The first obstacle that beginning programmers encounter, and that instructors

universally observe when teaching a text-based programming language (PL), is a

stubborn, and in many cases unsuccessful, struggle with syntax errors. This phenomenon

has long been reported:

… students using an unfamiliar or new programming language waste considerable

time correcting syntax errors. Studies have shown that excessive time spent on

correcting syntax problems can be detrimental to long-term success as students

become disheartened with programming. (Kummerfeld & Kay, 2003)

For several years, though, I have observed that requiring grade-level high school

freshmen to memorize program fragments and small programs resulted in a drastic

reduction of students repeatedly making the same syntax errors. Although this did not

magically turn all students into high-fliers, memorization – together with other language-

www.manaraa.com

 4

based instructional strategies – did greatly raise the performance of those who formerly

would have failed to learn much of anything at all. At the end of a 20-week high school

semester, what would have formerly been the bottom performing group of students was

able to successfully do basic introductory programming tasks, similar in both difficulty

and variety to the first 50% of problems found in the Logic-1 and Array-1 Java modules

on Stanford professor Nick Parlante's Codingbat.com website.

The most convincing way to demonstrate efficacy for language-based pedagogies

would have been to set up experimental and control classes, teach each for an extended

period using different instructional methods, give pre-and post-treatment assessments,

match students for characteristics that might affect the outcome, and run the statistical

analyses. The availability of resources required for such a lengthy experiment is rare at a

single secondary site, so a more limited study on the effect of memorization on syntax

acquisition was designed and executed. Statistical confirmation of a memorization effect

on syntax acquisition was weak and did not reach the 95% confidence level. A better-

designed study will be performed in the near future.

www.manaraa.com

 5

Section 2. Methods and Implementation

The study was conducted in August 2015 at the end of the first week of classes,

by which time enrollment had stabilized. The student programming tool was Processing,

a Java-based Integrated Developer Environment (IDE) for visual artists. The Case Study

Program (CSP) contained a main setup() method and 3 user-defined methods. Graphic

output was a simple design consisting of rectangles and lines. Guided instruction was

given to a class of grade-level
1
 high school freshmen as they incrementally built and

tested the program. Primitive drawing methods and RGB concepts were demonstrated

and explained. Counterexamples underscored common novice misunderstandings

regarding program operation and logic. With guidance from the instructor, students

observed changes in output as they experimented with the program – modifying method

parameters, changing the order of primitive methods, commenting out method calls – to

gain an appreciation of the flow of control and how primitive drawing methods worked in

concert with one another.

Students had been randomly assigned to two groups, each with equal numbers of

gifted and non-gifted
2
 students. Students were given a study sheet of the CSP (Figures

1A, 1B), consisting of (1) the program code, accompanied by line-by-line comments; and

(2) an image of the final graphic output. The control group was instructed to study the

CSP, while the experimental group was directed to memorize the CSP code. To make

clear what was expected from the memorization group, it was suggested that they

repeatedly (a) study the code; (b) set it aside; and (c) write out the program, using either

pencil/paper or a text editor, until they could reproduce the code perfectly from memory,

1
 Grade-level students are those proficient in Algebra 1 and co-enrolled in either Algebra 2 or Geometry.

2
 Data indicating previous assignment of gifted status was a part of each student's demographic record.

www.manaraa.com

 6

paying particular attention to details such as punctuation and letter-case. Students had the

weekend to study. Both groups were told that they would be tested on writing similar

code for a different novel problem. The memorization group was told that they would

also be tested on how well they had memorized the CSP.

Java Code

void setup() {

 size(300,200);

 background(0);

 drawYellowRect();

 drawThinVertBlueLine();

 drawThickHorzGreenLine();

}

void drawYellowRect() {

 rectMode(CENTER);

 fill(255,255,0);

 rect(300/2,200/2,280,180);

}

void drawThinVertBlueLine() {

 strokeCap(SQUARE);

 stroke(0,0,255);

 strokeWeight(5);

 line(300/2,10,300/2,190);

}

void drawThickHorzGreenLine() {

 strokeCap(SQUARE);

 stroke(0,128,0);

 strokeWeight(20);

 line(10,200/2,290,200/2);

}

Translation

Write the body for the system method setup (),

 return type (RT) = void.

Set window size to width = 300 px, height = 200 px.

Set the window background color to black.

Call a method named drawYellowRect().

Call a method named drawThinVertBlueLine ().

Call a method named drawThickHorzGreenLine ().

Write the method header for drawYellowRect(),

 RT=void.

Set the rectangle drawing mode to CENTER.

Set the interior brush color to Yellow.

Draw a rectangle, center at (150,100), w=280, h=180

Write the method header for drawThinVertBlueLine(),

 RT=void.

 Set the line end style to SQUARE.

Set the drawing pen color to blue (opaque).

Set the drawing pen width to 5.

Draw a line from (x1=150, y1=10) to (x2=150, y2=190).

Write the method header for

drawThickHorzGreenLine(), RT=void.

Set the line end style to SQUARE.

Set the drawing pen color to green (opaque).

Set the drawing pen width to 20.

Draw a line from (x1=10, y1=100) to (x2=290, y2=100).

Figure 1A. Case Study Program Code (CSP) and Translation.

www.manaraa.com

 7

Figure 1B. Case Study Program (CSP) Output.

It had been anticipated that there would be substantial non-compliance with the

study instructions from both groups. In this respect, the division of students into two

groups was a ruse. The plan was to assess all students on how well they had memorized

the CSP and use the memorization scores as the independent variable when looking at the

ability to solve a similar, but novel, problem.

At the next class meeting, students were given a chance to ask questions and clear

up any misunderstandings about the CSP code. All students were then given the

Memorization Assessment. The exam consisted of a handout with an image of the CSP

output (Figure 1B), but with all dimensions labeled. Students were asked to write the

CSP code from memory with paper and pencil to the best of their ability. All exams were

collected when the students had finished.

Students were next given a diagram of rectangles and lines with different

positions and colors, and asked to write a Processing program – referred to here as the

Novel Assessment Program (NAP) – that would output the new design. They were

supplied with specifications for all dimensions and colors, as well as the names and

descriptions of 3 user-defined methods they were to use in their programs (Figure 2).

www.manaraa.com

 8

Students were additionally given the CSP study handout (Figure 1A, 1B) for reference to

help them write the new program. Without analogous program code to refer to, students

who had not memorized the program would have been at a profound loss to perform the

task in any meaningful or substantial way. Figure 3 shows optimal code for the NAP.

Using the Case Study Program as a model, write a program that

produces the output at right using the specs below in the order

given.

1. The window’s width=400, height=600. The window color

is white.

2. The method drawRedRect() draws an opaque red

rectangle with a 1-px thick black border, width=300,

height=500. Its center is in the middle of the window (this

leaves a white 50 px margin on all sides).

3. The method drawThinHorzYellowLine() draws a

horizontal opaque yellow 5-px thick line with square ends.

It bisects the red rectangle.

4. The method drawThickVertBlueLine () draws a vertical

opaque blue 20-px thick line with square ends. It also

bisects the red rectangle.

Figure 2. Novel Assessment Program (NAP) Instructions and Output

void setup() {

 size(400,600);

 background(255);

 drawRedRect();

 drawThinHorzYellowLine();

 drawThickVertBlueLine();

}

void drawRedRect() {

 rectMode(CENTER);

 fill(255,0,0);

 rect(400/2,600/2,300,500);

}

void drawThinHorzYellowLine() {

 strokeCap(SQUARE);

 stroke(255,255,0);

 strokeWeight(5);

 line(50,600/2,350,600/2);

}

void drawThickVertBlueLine() {

 strokeCap(SQUARE);

 stroke(0,0,255);

 strokeWeight(20);

 line(400/2,50,400/2,550);

}

Figure 3. Novel Assessment Program (NAP). Optimal Solution

Having access to the CSP program does not automatically ensure that students can

write new programs perfectly. The reason: teachers routinely are asked for help during

instruction when students inadvertently insert errors into program code that they are

www.manaraa.com

 9

simply copying. It was therefore hoped that statistical analysis might be able to discern

small differences in the occurrence of such errors and confirm a memorization effect.

Composite Scores for both programs were calculated by combining three

measures: (1) Completeness, (2) Number of Syntax Errors and (3) Number of Logical

Errors.

Completeness

A complete 4-method program counted as 100 points. A missing method, or one so

incomplete as to be useless, resulted in a deduction of 25 points. The composite score

was heavily weighted using the completeness measurement because it was the parameter

best reflecting overall how well the student memorized the program.

Number of Syntax Errors

Four categories of syntax errors occurred, and each error counted as a one-point

deduction. These were:

1) Semi-colons that were either absent, or used incorrectly;

2) Curly braces that were missing or unpaired; or the wrong type of brace was

used (e.g. using an opening brace in place of a closing brace);

3) Errors in primitive drawing method calls:

a) A named-constant intended for one method was used incorrectly as a

parameter in a different method;

b) A method contained the wrong number of parameters;

c) Parameters appeared in the wrong order.

4) User-defined methods:

a) Headings lacked parentheses;

www.manaraa.com

 10

b) Method bodies were incomplete or missing.

5) A missing method counted as a 1-point syntax error. Without this (small)

adjustment, a blank paper would count as having no syntax errors.

Number of Logical Errors

Logical errors, each counting as a one-point deduction, included (1) setting pen

attributes after – rather than before – calls to draw lines or rectangles; (2) coordinate

errors affecting margins, positions, size, orientation and the like; (3) RGB errors.

Composite Score

The formula for the overall composite score appears below:

Composite Score = Completeness – # Syntax Errors - # Logical Errors

www.manaraa.com

 11

Section 3. Results and Evaluation

CSP Scores NAP Scores

Group Gifted

%

Incomplete

Program

Syntax

Error

Logic

Error

Com-

posite

Score

%

Incomplete

Program

Syntax

Error

Logic

Error

Com-

posite

Score

Control N 100 15 0 -15 0 8 7 85

Control N 100 11 3 -14 0 1 2 97

Control N 75 11 0 14 0 0 3 97

Exper N 75 9 1 15 0 5 3 92

Exper N 75 9 1 15 75 4 3 18

Control N 75 10 0 15 0 2 2 96

Control N 20 22 3 55 0 6 3 91

Control N 30 5 4 61 0 2 3 95

Control N 25 7 4 64 0 0 3 97

Exper N 0 2 3 95 0 1 3 96

Exper N 0 5 0 95 0 0 3 97

Exper N 0 2 0 98 0 0 3 97

Exper N 0 0 1 99 75 4 2 19

Control N 0 0 0 100 0 0 3 97

Exper N 0 0 0 100 0 0 4 96

Exper N 0 0 0 100 0 2 2 96

Control Y 100 11 2 -13 0 0 4 96

Control Y 100 11 1 -12 0 0 5 95

Exper Y 100 8 1 -9 0 0 4 96

Exper Y 75 15 1 9 0 5 3 92

Exper Y 30 12 8 50 0 3 3 94

Control Y 25 3 0 72 50 3 1 46

Control Y 20 3 4 73 0 1 4 95

Control Y 0 8 3 89 0 0 4 96

Control Y 0 9 0 91 0 3 1 96

Control Y 0 0 4 96 0 0 3 97

Exper Y 0 0 2 98 0 0 2 98

Exper Y 0 0 1 99 0 4 2 94

Exper Y 0 0 0 100 0 0 0 100

Exper Y 0 0 0 100 0 0 0 100

Control Y 0 0 0 100 0 0 0 100

Table 1. Experimental Results

www.manaraa.com

 12

Scores for each student appear in Table 1. Data is sorted by Gifted/Non-Gifted

status, and secondarily by CSP Composite Score. Pearson bivariate correlation analyses

were performed on the 31 students as a whole, and on groups disaggregated by Gifted (G)

and Non-Gifted (NG) status.

Table 2 shows the correlations of scores with the group – Memorization

(Experimental) vs. Control – to which students were assigned.

Data Sub-

Group
CSP Composite

Score (CSPCS)

CSP

Syntax Errors

(CSP#SE)

NAP

Composite Score

(NAPCS)

NAP

Syntax Errors

(NAP#SE)

All N=31 .258 (.162) -.326 (.073) -.159 (.393) .056 (.766)

Gifted

N=15
.021 (.941) -.060 (.833) .241 (.387) .242 (.385)

Non-Gifted

N=16
.492 (.053) -.555 (.026) -.353 (.179) -.077 (.776)

Table 2. Assignment to Memorization/Control Group as Independent Variable,

Pearson Coefficients and (2-tailed) p-values

The data show no correlation of Group Assignment with NAP scores. More

importantly, though, these data show poor correlation of Group Assignment with

successful recollection of the CSP code. Only the NG group showed moderate, but

statistically significant, correlations with the CSP Composite Score (CSPCS) (p < .053)

and the CSP Number of Syntax Errors (CSP#SE) (p < .026).

As mentioned earlier, the lack of correlation with successful recollection of CSP

program code was not unexpected, as substantial student non-compliance with study

instructions had been anticipated for both groups. In a one-time exercise, simply

assigning students to a group does not ensure that the desired experimental "treatment"

actually takes place. A much better measure of compliance with the memorization study

instructions in this case is the CSPCS.

www.manaraa.com

 13

The use of the CSPCS score as the independent variable, however, comes with its

own set of concerns. First, there is the possibility for some contribution to selection bias

from a student's Gifted status. Among the 15 students whose scores clustered at or above

the natural cutoff point of 89, the NG:G ratio is 7:8. The scores of the remaining 16

students ranged from -15 to 73 with a NG:G ratio of 9:7 (Table 1). Although these shifts

from parity are small, there is a workaround: one can eliminate any potential selection

bias by disaggregating the data into distinct Gifted and Non-Gifted groups.

A second concern is speculation that students with better scores were simply more

motivated, i.e. motivation might be a source of selection bias for the CSPCS. Note,

however, that motivation did not appear to be a problem when students worked on the

NAP coding task: NAP Composite Scores (NAPCS) Scores for 28 of the 31 participants

were 85 or above (Table 1). One would be hard-pressed to explain how low motivation

was the causative factor for both the poor CSPCS scores of half of the study's participants

and for that same sub-group's high NAPCS scores assessed a few minutes later. It should

also be recalled that 11/16 students in the Control group and 10/15 students in the

Experimental group (Table 1) appeared to comply with the instructions given to their

respective groups; therefore no inference can be made about the motivational level of 2/3

of the study's participants. One might also argue that situational motivation for

memorizing the CSP program outside of class was lower than when students worked on

the NAP program in class, but this would only apply to 5 students in the Experimental

group with poor CSPCS scores. Finally, one should remember that all students had a

history of high academic motivation and were – at minimum – grade-level proficient in

mathematics and English Language Arts.

www.manaraa.com

 14

It seems far more likely that students who had poor CSPCS scores, but earned

high NAPCS scores a few minutes later, were able to do so by referring to the CSP

handout as they wrote the analogous NAP program.

The research goal was to try to statistically tease out / discern small differences in

NAP coding measurements with the CSPCS score as the independent variable. The

reason for suspecting that such differences might exist comes from the common

observation that novice programming students routinely insert errors into programs that

they are simply copying, even when the text is sitting right in front of them. Most

instructors would view this from a behavioral perspective and blame the errors on a lack

of attention, care and/or precision on the part of the copier. Seen from within a language

framework, though, the errors can be ascribed to an incomplete but ongoing and

developing acquisition process of the meaningful syntactic markers of the language, a

phenomenon no different from the many syntax errors that foreign language instructors

observe their beginning students make on a daily basis. Although hyperbolic, Figure 4

may help instructors appreciate how foreign a program written in a PL may appear to

students when first encountered.

www.manaraa.com

 15

Figure 4. Top: What instructors imagine students see.

Bottom: What students might as well be seeing.

www.manaraa.com

 16

Data Sub-Group CSPCS vs. NAPCS CSPCS vs. NAP#SE

Gifted N=15 .039 (.891) -.036 (.898)

Non-Gifted N=16 -.050 (.855) -.474 (.064)

Table 3. CSP Composite Score as Independent Variable,

Pearson Coefficients and (2-tailed) p-values

Table 3 shows correlation values using the CSPCS as the independent variable.

Unsurprisingly, there are no correlations of CSPCS scores with NAPCS scores. A

reasonable interpretation is that most students were able to construct the complete

structure for each method of the NAP from the CSP handout via analogy.

However, the correlation values of the CSPCS scores with the number of syntax

errors (NAP#SE) made when students coded the NAP showed clear differences between

the two disaggregated groups.

The Gifted subgroup showed no correlation, i.e. so long as CSP code was

available, prior memorization of the CSP made no difference for Gifted students in terms

of syntax errors made when they wrote the NAP.

However, for the Non-Gifted subgroup, the result was a low-moderate inverse

correlation of -.474 (p < .064) between CSPCS score and NAP#SE. The result is

statistically unconvincing, but nonetheless suggestive that Non-Gifted students made

fewer syntax errors if they had successfully memorized the analogous CSP. Stated

conversely, Non-Gifted students who had not memorized the CSP were less successful at

deciphering meaningful syntax information from the CSP handout when constructing the

NAP. Figure 5 shows a plot of the data points with the linear trend line.

There were logistical and design problems with the experiment: the disaggregated

sample (N=16) was small; the magnitude of the penalty for calculating the NAP#SE

score for the 2 Non-Gifted students who had incomplete programs was minimal, but also

www.manaraa.com

 17

arbitrary; and that all students had access to the CSP handout when coding the analogous

NAP ensured that any detected differences in performance would be small.

Figure 5. Non-Gifted Subgroup: CSPCS score vs. NAP#SE

A better-designed follow-up study will be done. The current results suggest that

reference to the analogous CSP sufficiently compensates students who have not

memorized it when tasked with constructing the NAP. What the results do not discern,

though, is a difference in learning, i.e. the internalization of PL syntactic schemas, per

Piaget. In the new study, learning will be assessed by simply asking students to identify

the syntax errors in the code of a novel program.

In summary, the results of this study are unconvincing, but still suggestive of the

hypothesis – and the anecdotal observations – that among novice programmers most

likely to be struggling – memorization is an effective instructional strategy for

www.manaraa.com

 18

minimizing syntax errors, i.e. for internalizing the syntactic rules of a PL. Together with

fMRI data reported in the literature that link brain language processes to computer

program comprehension (Chapter 2, Section 3, Subsection 5), they form an intriguing

argument that language-based pedagogies which address both syntactic and semantic

issues merit further research to see whether they can better help students learn to

program. What I have been observing in the classroom is that language-based

instructional strategies (Chapter 2, Section 4) improve learning and understanding for all

first-year programming students, and not just strugglers. Better-designed follow-up

studies will be attempted to confirm this.

www.manaraa.com

 19

CHAPTER 2.

TEACHING CS USING A SECOND LANGUAGE PEDAGOGIC PARADIGM

Section 1. The Anti-Programming Interest Group (APIG):

Abandoning Novice Programmers

Prior to addressing second language pedagogies, it would be instructive to provide

some background about how the intellectual climate of secondary CS education has been

shaped by recent attempts to address the low enrollments and inability of most grade-

level high school students to succeed in both pre-AP programming (CS0) and AP

programming courses (CS1).

One instructor has described the university-level CS1 course as comparable in its

complexity to writing "a fifteen-page paper … on Napoleon’s invasion of Russia… in

Swedish, using a quill pen" (Bloch, 2014). Likewise, novice programmers are asked to

master several conceptual skills quite quickly:

a) Learn to use an Integrated Developer Environment (IDE), a software program

with special features to ease the process of writing computer programs, and to

run, test and debug them.

b) Develop moderate proficiency in a programming language; and

c) Write programs to correctly solve problems in wildly different subject domains.

A daunting task, yet many students are able to do all of this, taking to the subject like fish

to water. This has also been the initial experience of virtually all CS instructors. As

such, appreciating the learning perspectives of their struggling students is next to

impossible, limiting their ability to pin down, or even imagine, exactly where the learning

process is breaking down.

www.manaraa.com

 20

 The literature documents numerous attempts to help struggling novice

programmers, some of which have involved the creation of IDEs that circumvent the

preponderance of syntax errors that novices make when writing programs in a text-based

language (Daly, 2009) (Kelleher & Pausch, 2005). There is, however, little to no

evidence that these interventions can help students transition to programming in a text-

based language.

A handful of programs at elite universities, whose learners comprise the top tier of

academically talented and motivated students, have implemented contextualized curricula

and social support mechanisms to increase the participation and retention of poorly

represented demographic groups (females, in these particular studies), with some measure

of success (Frieze, Quesenberry, Kemp, & Velazquez, 2012) (Alvarado & Dodds, 2010).

However, there are few expectations that these methods can be successfully replicated in

less selective colleges or broadly at the secondary level.

These two issues, self-efficacy and attrition, factor into the dismal and well-

known demographics disparities in participation rates of females and under-represented

minorities (URMs). The problem has proved so intractable and exasperating that the

UCLA-based Exploring Computer Science (ECS) group, whose mission is to broaden

participation in computing through equity and increased access, has from the outset,

abandoned the idea of teaching programming to high school students, aside from a

superficial and below-grade level exposure. This group has instead compiled a poorly

conceived, simplistic and, in places, dumbed-down and bizarre survey course, penned by

authors whose subject-matter competence appears to extend no further than the first year

www.manaraa.com

 21

of a college-level programming curriculum
3
. The lessons are from a diverse range of

sources, but often have a questionable connection to CS and little to no relationship with

one another. The result is a confused curriculum with disjointed units and poor cohesion.

A detailed unit-by-unit critique is given in Appendix A.

Even were this survey course somehow of adequate quality, it would be a

nonsensical response. The universal postsecondary consensus is that without a firm

programming foundation, it is impossible to understand topics in subsequent coursework,

including algorithms, on anything beyond a trivial level.

Many introductory programming courses have programmability as a core activity

and learning goal, and for good reasons since programmability is the defining

characteristic of the (digital) computer. This is also echoed in the ACM/IEEE

curriculum recommendations the programming-first model is likely to remain

dominant for the foreseeable future. (Bennedsen & Caspersen, 2012)

Indeed, instructors of postsecondary courses geared to non-majors, such as Wheaton

College's Computing for Poets, echo these same sentiments:

This course teaches computer programming as a vehicle to explore the formal

symbol systems currently used to define our digital libraries of text. Programming

facilitates top-down thinking and practice with real-world problem-solving skills

such as problem decomposition and writing algorithms." (Computer Science 131.

Computing for Poets.)

Removing the goal of programming proficiency from an introductory CS course

and replacing it with a survey of the "major concepts of the field of computer science"

(Goode, Chapman, & Margolis, 2012) is nonsensical in several ways.

First, the idea is as poorly thought through as neglecting French language skills in

a first-year course, opting instead to focus on literature-in-translation. Schemes of this

3
 The impetus for the ECS survey course was a failed attempt by the Computer Science Equity Alliance to

expand offerings of the AP Computer Science course throughout LAUSD. The response to create a survey

course, as opposed to a foundational programming course, was both an illogical choice and a strategic

mistake. This episode is discussed in more detail in Appendix A.

www.manaraa.com

 22

sort would ignore both the interrelationship of language and culture, and the dead-end

role of perpetual outsider for those with limited language proficiency. A similar analogy

would be an Algebra 1 course taught without variables, where students plot specific lines

and calculate slopes, but aren't taught line equation formulas. Whether going by the

name "general", "technical" or "vocational" math, course sequences comprised of content

that regurgitated grammar school math and culminated in pre-Algebra at one time served

a generation of American high school students not bound for college. It's hard to imagine

secondary math educators advocating a return to a curriculum as regressive and

trivialized.

Second, there are pedagogic parallels between modifying programs and viewing

the outputs, and the use of graphing calculators in Algebra 2 classes. Graphing

calculators allow students to quickly observe the effect on curves when parameter values

are changed. In the time it would take students to manually graph one curve, they can

instead examine, compare and reflect on 25 variations in a family of curves. Similarly, in

the course of examining a CS concept, the constant interplay of making small

modifications to a program and observing the output allows students to learn more deeply

and quickly. Students with little programming facility will learn far less, if anything.

Third, in terms of vertical alignment, failing to rigorously teach the programming

concepts found in a typical CS1 programming curriculum will leave students without the

conceptual foundation they will need to understand ideas in subsequent coursework. In

the vocational math example given above, it would be absurd to propose a hypothetical

survey course of the "major concepts" of algebra, geometry, trigonometry and calculus

for a target audience of pre-algebra students because they lack the requisite background

www.manaraa.com

 23

for any real comprehension. Educators advocating such courses would, for good reason,

be driven out of the profession. In like manner, the ability to program provides the tools

to test, manipulate and explore in depth concepts studied in the many subfields of CS. To

teach "major concepts" without a programming foundation would require that any

content be simplified to such an extent that the "concepts" part is for all practical

purposes gutted. As an example, the simplest concept – and one of the first taught – in a

course in Machine Learning is the Perceptron, the mathematical model of a neuron from

which neural networks are built. To understand the Perceptron concept in any rigorous

way requires writing an implementation, observing the program's running behavior, and

studying the Perceptron Convergence Theorem – the proof that a Percepton will always

be able to classify sets of linearly separable data. Simply watching a graphics demonstra-

tion of a Perceptron would be a surface exercise, leaving students with no appreciation,

deep or shallow, for its internal workings or its potential uses in neural networks.

Practically speaking, though, the ECS course doesn't even live up to the promise

of including the "major topics" of CS. Someone holding an undergraduate degree in CS

would recognize nothing of the sort in this course. Rather the overall sense of many of

the course's topics can be more accurately described as a truncated and much simplified

version of a first-year programming curriculum, but one which has been gutted of PL

instruction. What remains are the domains of practice problem sets that, in a

programming course, had been specifically chosen because their solutions required the

use of particular PL control structures or concepts. The domains themselves – what

formerly served as the material for practicing the application of PL concepts – have been

confused for and presented as essential CS topics (for examples, see Appendix A).

www.manaraa.com

 24

In the world of secondary CS education, the notion of the central place of

programming in a CS curriculum has been under attack for the past decade, with a goal to

ideologically relegate programming to the periphery as just another subfield of CS. A

suitable moniker for the group of educators responsible, which includes the authors of

ECS, might be the Anti-Programming Interest Group (APIG), borrowing H.M. Kliebard's

term "interest group" to describe factions that attempted to influence and shape American

education in the first half of the 20
th

 century (Kliebard, 2004). Along with the

dissemination of ECS, the APIG has managed to inject its flawed ideological premises

into the policies of the Computer Science Teachers Association (CSTA) (Appendix B), a

K-12 CS advocacy and resource subgroup under the aegis of the ACM (Association for

Computing Machinery), the largest umbrella organization for scientific and educational

computing groups.

In the eight years since ECS first appeared, it has persisted with the spin that its,

at best, middle-school level course is a rigorous introductory pre-AP curriculum.

Furthermore, with the imprimatur of their National Science Foundation (NSF) and CSTA

backers, ECS has managed to persuade several large underperforming urban school

districts nationwide to offer it. Most administrators at secondary institutions, failing or

otherwise, have little to no competence or familiarity with the subject matter and would

be hard-pressed to distinguish a useful, rigorous CS curriculum from one of poor quality,

or even one having no CS content whatsoever. After eight years, there is unsurprisingly

zero evidence that ECS has propelled any students into further CS study, or at an even

more basic level, that students actually learn its simplified content. Moreover, ECS has

provided no evidence that students learn any skills or concepts that will substantially

www.manaraa.com

 25

prepare them for – or even give them an increased chance of success were they to take –

the Advanced Placement Computer Science (APCS-A) course or its CS1 college

equivalent, or any subsequent CS coursework for that matter.

Worse, ECS, despite its rhetoric of "equity", "access", and "broadening

participation" in CS, has replicated in LAUSD – the Los Angeles Unified School District

– the very institutional problem it set out to resolve: a de facto two-tier system. The

lower tier consists of poor minority students at failing urban campuses who now learn a

below-grade-level ECS curriculum
4
 taught by instructors, the vast majority of whom are

not subject matter competent (SMC), i.e. they possess neither a CS college degree nor

proficient programming skills. The higher tier comprises privileged students at half a

dozen of the approximately 200 district high schools, either located in wealthier areas or

academically selective in some other way. These schools offer an APCS-A course taught

by SMC instructors, with annual AP exam pass numbers in the double digits. It also

needs mentioning, that, as anyone who has taught in a large failing urban high school

knows, there are students in every high school who are at or above grade-level and have

the academic ability to succeed in rigorous coursework. ECS' success in propagating

their inferior curriculum in poor urban school districts across the country comes at the

cost of depriving such students of the opportunity to access a high-level CS course. No

sense of irony is lost that Margolis, who first raised awareness of the social injustice

aspects of secondary CS education in LAUSD by describing students (females, URMs)

4
 ECS has taken the place of Computer Literacy courses (the MS-Office suite). One might argue that the

former had more practical value.

www.manaraa.com

 26

without access to quality CS education as "stuck in the shallow end"
5
 (Margolis, Estrella,

Goode, Holme, & Nao, 2008) – and is the first to admit that she has no expertise in CS –

has allied herself with this distraction from efforts to identify and remedy the contributing

causes of ineffective programming instruction.

ECS has also promoted a "Teacher Support Model":

To carry out the curriculum, teachers are key. For this reason, we couple the

curriculum with a teacher professional development program, offering ECS

teachers intensive professional development during summers and throughout the

school year that:

1) address CS content, pedagogy, and belief systems (including stereotypes

about which students can excel in CS);

2) provide in-class coaches who help reinforce skills learned at workshops; and

3) offer participation in a teacher community for reflection, discussion,

collaboration and support. (Margolis, et al., 2012)

Offering vague ideological-sounding phrases like "radical transformation of teaching is

required to broaden participation in computing" (Goode, Chapman, & Margolis, 2012) as

its rationale, ECS' professional development model "radically" dispenses with all notions

of accountability regarding its effectiveness in demonstrating measurable, positive

educational outcomes for students, or – to set the bar even lower – that students are even

learning the below-grade level curriculum. The goals of the teacher model are explained:

The aim of this program is to help support teachers learning of the ECS content

while simultaneously strengthening teachers’ pedagogical content knowledge that

supports the teaching of ECS. For many teachers, building a pedagogy that

supports inquiry-based teaching and equity practices in the classroom is a multi-

year process.

The instructional strategies featured in these workshops – inquiry-based and project-

based learning and multicultural education – are, however, long-taught staples of teacher-

5
 "Stuck in the Shallow End" can be a metaphor for multiple areas/activities from which minorities have

historically been excluded: from public swimming pools during the segregation era, for the

disproportionate number of people of color who don't learn to swim, for the higher rates of drowning deaths

in minority communities.

www.manaraa.com

 27

credential programs. Although the workshops make frequent reference to the

demographic challenges of the subject area in all of its manifestations, there are no

pedagogies taught whose value in addressing issues of minority or female participation or

success in secondary CS classrooms has been validated by research studies.

 Also absent from this teacher model is the collection and evaluation of evidence

of student learning, and reflection on that evidence. The focus rather is on a pre-

conceived notion of teacher instruction as opposed to critical observation of students as

they learn. The errors that students make provide insights into the process by which they

learn, and are not just a collection of misunderstandings that require correction. The

former has far deeper implications and utility for informing instruction (Corder, 1967)

(See: Chapter 2, Section 3, Subsection 2).

Regarding the claim that their model strengthens "teachers' pedagogical content

knowledge", first-hand knowledge can reveal quite the opposite. When I attended the

week-long training workshop at UCLA in August 2009, one early exercise included

teams of teachers brainstorming how to visually demonstrate several sorting algorithms.

My team of 3 and a second team of 5 were assigned Quicksort
6
 and given CS Unplugged

handouts explaining the algorithm. The 5-member team presented first. The team's

members lined up single-file in front of a table. The teacher at the rear of the line handed

each object up the human chain, bucket-brigade style. When an object reached the

teacher at the head of the line, he simply placed it in its correct position by eyeballing it,

widening spaces between already-placed objects whenever he needed to! Despite that

many of these instructors were highly proficient in their own subject areas (physics and

6
 Note that even the APCS-A course declines to teach Quicksort, opting instead for its more

comprehensible divide-and-conquer cousin Mergesort.

www.manaraa.com

 28

math), and some had even taught APCS-A, there was a complete absence of even the

most basic understanding of the sorting algorithm mechanics of comparing and swapping.

The fact is they were simply not SMC and hadn't taken the time to remedy that deficiency

by enrolling in a university-level introductory CS class. As such, even the simple

explanation in the CS Unplugged handouts was beyond their ability to comprehend

without the guidance of a SMC instructor. The end of their presentation was met with

unanimous applause, with the ECS team and authors joining in and smiling! No one on

the ECS team offered any corrections and the presentations continued. This was my first

realization that the course was subpar and its authors themselves lacked subject-matter

competence. Unfortunately, this anecdote turned out not to be unique, and my continued

involvement with the ECS project over the next academic year only confirmed the

inferior academic nature of the course.

This episode of mediocrity is in fact typical of most public school CS programs.

The educational system from top to bottom simply refuses to put the resources into

training and staffing high schools with SMC CS instructors. The subject area is such a

low priority that current thinking among administrators is that as long as the teacher can

stay one step ahead of the students, where's the harm? Note that this is the best scenario,

which assumes that teachers actually understand a lesson's concepts. Standards this low

for core subject instructors would be inconceivable.

In the past several years, also with funding from NSF, there has been a parallel

development of the College Board APCS Principles course. The subject matter and

programming instruction in this course is generally at an appropriately higher level due to

its having been piloted by CS departments at universities nationwide. Course instructors

www.manaraa.com

 29

have developed a host of creative and imaginative lessons that are extremely clever and

engaging, and hence quite useful in both a pre-APCS programming course and the

APCS-A course itself. Nevertheless, the APCS Principles course, like ECS, has been

conceived as a counterweight to the so-called "programming-centric" (Goode, Chapman,

& Margolis, 2012) focus of the APCS-A/CS1 course. Although the programming

examples studied in some versions of the course are quite advanced, in the version of the

course in which I was trained, students are expected to only modify program code, not

write entire programs from scratch, and little attention is paid to teaching programming

competence. Compounding this, during a two-week APCS Principles training workshop

developed by Project Lead the Way (PLTW, summer 2015), I witnessed several smart

but not SMC instructors struggle with the initial step of simply trying to choose an

appropriate program to modify because of their unfamiliarity with Python syntax, data

structures and control structures. This elephant in the room – finding competent CS

instructors – is a huge problem:

Applying the current AP training model for new CS teachers is similar to asking a

teacher with no mathematics background to initiate a new AP Calculus course

with just one week of training. This situation would seem absurd to most

administrators in the mathematics context, but it is the common expectation for

promoting new AP CS courses. (Gray, 2013)

Given all this, it would be magical thinking to expect APCS Principles to provide much

help to novice programmers in overcoming the problems they will inevitably encounter in

the course. Likewise, students taking APCS Principles will benefit little from it in a

subsequent APCS-A course, should they choose to continue study.

One may wonder how a course as grossly substandard as ECS can be

disseminated in plain sight. The answer lies in an educational milieu where : (a) there is

www.manaraa.com

 30

massive ignorance about CS by K-12 stakeholders, and (b) school systems are headed by

administrators who essentially don't care, responding to news publicity about the

impoverished state of CS education with proposals that superficially play well to the

public, but that require no additional allocation of financial resources. In such an

environment, ECS was readily embraced by LAUSD and earned easy approval as a

University of California college preparatory "G" elective. With no evidence of

effectiveness, NSF touted ECS as an "exemplar" for developing curricular materials for

APCS Principles (Cuny, 2011). The logical contradiction, however, is that had ECS been

an effective and rigorous pre-AP curriculum, there would have been no need for APCS

Principles.

Even more astounding, although the low quality of the course is an open secret on

the order of "The Emperor's New Clothes" – quietly acknowledged by even NSF staff in

the same office which funded its continuing development ($1.5 million in 2010 and $2.4

million in 2012) – to this day, NSF's CISE (Computer & Information Science &

Engineering) Directorate continues to support the expansion of ECS by funding grants up

to $1 million for proposals that "focus on efforts that enable teachers to successfully offer

either or both of two new courses: Exploring Computer Science (ECS) or the new

Advanced Placement (AP) CS Principles" (STEM + Computing Partnerships Program

Solicitation NSF 16-527, 2016).

The phenomenon of substandard curricula being embraced by public schools is

not without historical precedent in the haphazard evolution of the modern American

public educational system. From its origins around the turn of the 20
th

 century, American

education has been an amalgam of accumulating and competing ideas pressed by four

www.manaraa.com

 31

principal interest groups. Their chief philosophical emphases can be succinctly

summarized as: (1) humanist/academic; (2) social efficiency; (3) psychological /

developmental; and (4) social reconstruction/social justice (Kliebard, 2004). Each had its

heyday and each left its mark, for better or worse. The more significant reforms that

remain are:

a) subject realignment, e.g. botany and physiology were replaced with biology, a.k.a.

the life sciences (social efficiency);

b) a subject-centered college-preparatory curriculum (humanist);

c) egalitarianism, in the sense that all should have the opportunity to learn

(humanist);

d) the factory-model, "platoon" system of managing resources, e.g. moving students

from room to room (social efficiency);

e) vocational education (social efficiency);

f) child-centered psychological learning theory and constructivism

(developmentalist);

g) multiculturalism and critical theory, especially as represented in the social

sciences (social reconstruction/justice)

h) accountability, charter schools / privatization of education, and the standards

movement (social efficiency)

One failed – and in retrospect much-ridiculed – reform, with uncanny parallels to the

APIG, was the avowedly and unapologetically anti-academic Life Adjustment curriculum

of the cold-war era. Life Adjustment education was the second major initiative pressed by

Charles W. Prosser, an early proponent of "social efficiency" who was involved in the

www.manaraa.com

 32

passage of the 1917 Smith-Hughes Act that conferred federal support for vocational

education in the public schools. Life Adjustment advocated a high school curriculum that

was relevant to the social needs of teenagers, including areas such as dating, learning to

be an effective consumer, social relationships, family living, and the like. Courses

included School and Life Planning, Preparation for Marriage, Boy-Girl Relationships,

Learning to Work, and How to Make Friends and Keep Them. The movement secured a

place in educational policy by professing to be a solution for a perceived dropout crisis

based on regional dropout rates as high as 30-45%. The curriculum was backed by the

National Association of Secondary-School Principals, and even the U.S. Department of

Education supported implementation of Prosser's ideas at one time. Life Adjustment

education eventually came under heavy attack in the early 1950s by academics who had

long viewed the school's job as the development of the intellect. By the time of Sputnik

and the subsequent 1958 National Defense Education Act, the Life Adjustment movement

had lost most of its credibility among the general public (Kliebard, 2004).

Kliebard's historical examples support the thesis that American educational

interest groups have succeeded in influencing the public school system when they

proposed solutions to a perceived or manufactured crisis. In the case of the APIG, the

"crisis" is an educational system that produces only a fraction of the CS college graduates

needed to staff an ever-expanding and lucrative computing job market. Pointing to

universally acknowledged dismal levels of enrollments in the AP Computer Science

course, and to a stubbornly persistent and severe minority and gender participation gap,

its proposed solution is to expand participation in CS by these traditionally

underrepresented groups. ECS has indeed shown that it can easily fill its academically

www.manaraa.com

 33

low-level classes with students in these demographics. This exercise-in-cynicism,

however, can only succeed in the environment already described, where ignorance in the

K-12 educational establishment about CS is pervasive, and apathy by boards of education

and district administrators that prefer the appearance of doing something on the cheap to

substantive efforts that would require the budgeting and expenditure of significant

financial resources.

Although ECS' original mission was to respond to this "crisis" – low numbers of

CS college graduates – its mission has "evolved" after the fact, one might even say

conveniently:

Our mission goes beyond the “pipeline” issue of who ends up majoring in CS in

college. Rather, our mission is to democratize CS learning and assure that all

students have access to CS knowledge. (Margolis, et al., 2012)

"Beyond" is a euphemism; discarding "the pipeline issue" would be more accurate. ECS'

idea of democratization is simply to expose large numbers of minority urban and female

students to whatever content is in their course. Accountability and even the much lower

bar of simply inspiring students to engage in further study of CS are disregarded
7
. In an

article with a section entitled Appropriate Measures of Reform Success Must be Used, the

authors of ECS state:

Disrupting the traditional secondary curriculum with the introduction of computer

science education can entrap reformers into proving that … students are more

likely to choose to enroll in computer science classes in the future. These are

incredibly high, if not impossible standards for any one high school class to

obtain, and the high possibility of confounding variables makes it difficult to

ultimately make any conclusions. Additionally, these types of measures dilute the

importance of computer science as essential knowledge for 21
st
 century students

in its own right… As a community of computer science educators, we must allow

7
 In contrast to the core subjects, goals of secondary CS0 courses are often nothing more than to "inspire"

students, rather than preparing them for future coursework with rigorous instruction and skills. A math

course whose primary objective was to inspire students to take more math classes would never be taken

seriously.

www.manaraa.com

 34

access to learning computer science education in high school serve as a

fundamental right to learn, rather than a stepping-stone for a future purpose.

(Goode, Chapman, & Margolis, 2012)

The claim about "incredibly high, if not impossible standards for any one high

school class to obtain" and "confounding variables" has, however, apparently not

hindered the College Board from conducting several longitudinal studies on the positive

quantifiable effects of the APCS-A course on choice of college major. One study

correlated participation (not just passing scores) in the APCS-A exam with a 6- to 8-fold

higher probability of choosing a CS college major (Morgan & Klaric, 2007). Another

found that 20% of students who score 2 or higher on the exam choose a CS major, and

that fully 27% of students earning a 5 go on to major in CS (Mattern, Shaw, & Ewing,

2011).

In this regard, what is missing and what no one seems to care about, is

accountability in the form of evidence that any of the many thousands of students who

have taken ECS have taken and succeeded in subsequent CS coursework. In sharp

contrast, in this same 8-year time period, the half dozen successful APCS programs

taught in LAUSD have produced over 500 students who have passed the AP exam

(earning scores of 3, 4 or 5), including the 47 students in my small program in the 6 years

from 2010 through 2015, plus 16 more who earned a score of 2. Applying the College

Board's finding that statistically 20% of such students choose a CS major (and confirmed

by reports from former students returning to visit, even some with scores of 1), the

effectiveness of this author at a small school with not a penny in federal funding – or of

any effective APCS teacher, really – dwarfs the non-existent results of the ECS program

over a comparable time period in mitigating the APIG's so-called crisis.

www.manaraa.com

 35

Such statistics accentuate the stark contrast in student outcomes between ECS and

APCS-A. LAUSD's current two-tier system for these two courses is eerily reminiscent of

the (earlier described) track system of previous decades in which college-bound students

took a math sequence culminating in calculus and pre-calculus, while students not bound

for college took a general mathematics sequence terminating with pre-algebra (Brahier,

2005).

Goode et al. also asserted that "access to learning computer science education in

high school" should be a "fundamental right". One can hardly disagree – as long as there

is a caveat that CS instruction be rigorous. However, if the "CS knowledge" taught has

been simplified to such an extent that it does not align vertically, it becomes a dead end,

teaching disjointed concepts and skills whose level is so minimal that their real-world

applications and capacity for vertical academic preparation are nil.

 Lastly, the past several years have seen the emergence of campaigns like the

"Hour of Code", meant to increase the numbers of K-12 students studying CS, and in

particular programming. The goal is right on the mark, but, like the APIG, its means is

largely hype: generating enthusiasm to bait students and their naïve teachers, and relying

on the same ineffective and failing pedagogies that have left most students confounded

since the beginnings of CS education. In March 2013, code.org posted a video on

YouTube entitled "Anybody Can Learn – code.org" featuring software company CEOs

and other high-level officers (all from privileged educational backgrounds) touting the

message that coding is an easily acquired skill, despite the overwhelming evidence to the

contrary. A second more minor, but still indicative, example of their campaign strategy,

is the Hour of Code website's encouragement of pair programming, stating incorrectly

www.manaraa.com

 36

that "research shows students learn best with pair programming, sharing a computer and

working together" (Hour of Code, 2015). In fact, pair programming requires continual

teacher monitoring and is much more than "sharing a computer and working together".

Moreover, rigorous studies that found mixed results and modest benefits of pair

programming in postsecondary full-semester CS1 courses (Braught, Wahls, & Eby, 2011)

have not been replicated in secondary classrooms, although recent middle-school studies

have shown benefits under certain conditions, particularly when the members of a pair

were friends (Werner, et al., 2013) (Denner, Werner, Sampe, & Ortiz, 2014). In ways

such as these, the campaign trivializes and misrepresents the subject and raises false

expectations and hopes.

These types of pitches have become fairly common, most recently playing out

with adult learners. The Washington Post reported on the rapid expansion of coding

bootcamps that promise high-paying jobs upon completion, but with courses costing

upwards of $10,000. The article critiqued such educational models, now being copied by

some universities, with critics arguing metaphorically, "You emerge from a bootcamp fit

to do an oil change, but not design a car".

Longtime tech recruiter Dave Fecak is worried about the push towards fast-paced,

truncated coding programs. “We as a nation, as we talk about the STEM shortage,

we’re fostering a gold rush mentality that leads to these bootcamps with the

promise of employment, promise of strong employment with strong demand and

stability and a lot of money,” he said. “And a lot of the people that may get

coerced into signing up for these bootcamps may end up with a lot of debt and not

a lot of job offers.” He likens the trend to throwing bodies at the problem rather

than addressing the industry’s real need for highly skilled developers. (Turner,

2016)

www.manaraa.com

 37

Section 2. Technological Innovation is Not Pedagogic Innovation.

The largely unquestioned assumption spurring the manufacture of the ECS and

APCS Principles frameworks has been that teaching programming to any but the most

"naturally talented" of students is an insurmountable obstacle at the secondary level. An

alternative narrative, however, is that the problem may lie with ineffective instructional

strategies, that is, with pedagogy. To this end, instructor-developers have created new

technologies to simplify the process of learning to program. Two extremely innovative

and engaging programs that have exhibited real staying power over the last decade are

MIT's Scratch and Carnegie-Mellon's Alice, drag-and-drop IDEs that allow students to

skirt many of the syntax markers errors they are prone to make when programming in a

text-based PL.

It has been suggested, however, that these and scores of similar changes to the

instructional technology over three decades – be they in language, paradigm, platform, or

context – have contributed little, if anything, to solving the persistent problems that

confound novice programmers, and that their categorization as pedagogic interventions is

only in the most superficial of senses (Kumar, 2013). Superficial because instructional

resources that accompany these technologies follow a textbook formula/structure

modeled after a traditional math curriculum: direct instruction and problem sets. The

technologies may be novel, but pedagogically, there is no innovation in how they are

used for instruction. Crucially, little or no thought has been given to how students

actually learn. What's curious is that there are self-paced mathematics programs (e.g.

ALEKS) that, while largely using Socratic methods, constantly assess student learning

and adjust lessons and instruction accordingly. The equivalent in the CS educational

www.manaraa.com

 38

world is simply online problem sets that allow a learner to see whether solutions work for

a range of input/parameter values.

When one reflects on why all of the attention in K-12 CS education has gone to

technologic innovation, it seems only natural that CS instructors might innovate in the

single area where they feel most competent, the technology component. Secondary CS

courses are generally modeled after university courses, and college CS professors have

had little to no training in education, particularly psychological theories of learning and

child development. Because the way they were taught succeeded (for them), they might

not naturally think about entirely different approaches to pedagogy, let alone different

overall learning models for the core skill of the discipline (computer programming).

It took decades of K-12 math instruction to arrive at (a) strand categories that

persist throughout these 13 years, (b) vertically aligned standards for each grade level,

and (c) a rich variety of pedagogies for each level, strand and sub-discipline. CSTA has

drawn up standards, but its results have been feeble in comparison, and generally useless

in practice. CS and in particular computer programming have two things working against

them in K-12 education. The field is young and rapidly changing, and it is not universally

or consistently taught at these levels. There are few SMC secondary CS instructors, a

situation that limits the types of day-in, day-out observations of student learning that can

lead to reflection on how instruction might be made more universally effective.

Moreover, SMC secondary CS instructors are themselves not immune from the same

biases as their postsecondary counterparts, thinking that students who are successful in

their classes have "innate" talent; and the corollary, that otherwise intelligent students

who lack these characteristics will fail, though studies to identify such traits have found

www.manaraa.com

 39

no correlations. If such ideas lie at the heart of instructors' belief systems, there's little

incentive to investigate or change one's pedagogies.

It has been claimed that drag-and-drop programming interfaces have a pedagogic

value, in that they lower a learner's cognitive load by circumventing the unforgiving need

for proper use of syntactic markers when programming in a text-based PL. The scope of

this effect, however, is extremely narrow, as it targets just a miniscule portion of a

programming language's syntax – markers for command termination, signifiers for blocks

of commands, a partial improvement on parameter passing – all areas that can be quickly

and effectively addressed by memorization. Moreover, evidence is lacking that

instruction that utilizes these IDEs have any benefits for novice programmers post-

course, e.g. that whatever skills learned transfer to text-based PLs; or that they aid

students in learning how to write and organize programs to solve novel problems, even

within the narrow domains of the IDEs themselves. The advantage – the bang for the

buck – that these impressive IDEs provide is thus theoretically very limited and

unproven, at best. It is not an overstatement to say that if one views these IDEs as

pedagogic interventions, that they represent the only significant innovation of the last

decade.

Scratch and Alice also contextualize programming domains within their

remarkable 2-D and 3-D virtual worlds, respectively, and there is no question that

students find their initial encounters with these worlds compelling. However, the trade-

off has been that programming problems and examples are constrained to the limited list

of objects these 2-D and 3-D worlds provide. My experience has been that secondary

student interest in these virtual worlds largely exhausts itself after a couple of months,

www.manaraa.com

 40

and the slate of categories of problems that can be done within them similarly runs its

course.

There is also good reason to doubt that transfer of programming concepts and

skills to other PLs can occur in the absence of programming fluency, if our experience

with second language acquisition is any guide. There is some evidence that acquiring a

third language is easier after fluency or comfort in communicating in a second language

has been attained (Abu-Rabia & Sanitsky, 2010). In this vein, the practice of teaching

novices one PL only to switch PLs each semester or year is as pedagogically disruptive

and self-defeating as teaching a semester of Spanish followed by a semester of German,

then a semester of Russian. It's true that the goal is to impart CS programming concepts,

but one can't ignore the fact that those concepts are mediated by and tightly intertwined

with a language. Students need to acquire sufficient language proficiency in how their

first PL operates – how it handles the basic set of introductory programming concepts –

before both language-related and CS concepts can transfer over and into a subsequent PL.

In broad terms, students choose a course of study with two considerations in

mind: self-efficacy and interest. While interest is non-negotiable – students need to find

some sort of personal connection to the subject matter – they must also feel confident in

their understanding of the subject's concepts and their ability to apply them in non-trivial

situations. Educators who contextualize programming instruction may effectively be

addressing student interest. However, no amount of interest will give students the

confidence required to continue studying the subject if they experience little progress or

success in composing working programs on their own.

www.manaraa.com

 41

Pedagogical innovation gleaned from an ongoing cycle
8
 of Teach; Observe;

Collect and analyze data; Reflect has for decades been the primary, ongoing

methodology for improving student learning, and there is no reason to believe that CS

educators are any exception. The results of this process for the core K-12 subjects –

particularly mathematics – have been formalized pedagogies that have statistically

demonstrated positive outcomes vis-à-vis student learning. The history of CS education,

to the contrary, has consisted almost entirely of glossy technological "fixes" that fix little,

at the near total neglect of considering – let alone investigating – alternative pedagogic

approaches. It is a sad fact that CS instructors have not moved the needle one iota in

terms of student learning since CS education began, and none can pinpoint why some

students succeed while others struggle and fail.

8
 The emphasis is on the word cycle, in that any of the four processes can be an entry point. In

constructivism and the ideas of Dewey, there is much mention of the phrase "student-centered", crafting

instruction to meet student needs. The corresponding process in the cycle, and often the most useful

starting point, is Observe, paying attention to students – in particular noting the mistakes that students

make, seeing their errors as evidence that teachers can use to speculate about theories of how they learn

particular topics. Theories, whether correct or not, can inform instruction. Instruction can in turn be tested

to ascertain its effectiveness.

www.manaraa.com

 42

Section 3. SLA Theories and Programming Languages

Subsection 1. Theoretical Considerations for Using a SLA Model in CS Instruction

CS1 instructors often dismiss the importance of learning any particular PL,

because a primary objective of a programming course is to teach programming concepts,

i.e. the use of a PL. Instructors have often rationalized this dismissal with arguments that

languages come and go, and that CS majors will inevitably have to program in multiple

languages. The illogic of how one is expected to learn concepts mediated by a language

one doesn't fully understand how to use, though, has never seemed to be a serious

consideration.

 Only a handful of papers exist in the literature suggesting that language issues

may impact CS education (Robertson & Lee, 1995). One researcher stated:

Language acquisition studies provided the theoretical basis and much of the

relevant research for the [current] study. Drawing parallels between language

classrooms and introductory computer science classrooms does not require much

imagination. (Applin, 2001)

Applin's insight about the similarities to language classrooms notwithstanding, in

reality there are vast differences between natural languages (NL) and artificial PLs, and

one must consider whether a NL acquisition model is even applicable at all. Some of the

extensive differences between NLs and PLs are summarized in Appendix E, though four

characteristics of PLs in particular have critical implications for pedagogy. These are:

(a) PLs are not spoken; (b) PLs are visual languages; (c) PL syntactic structures are less

specific than those of NLs; and (d) in linguistic theory, PLs belong to a different grammar

type than NLs. Nonetheless, the generative nature characteristic of all languages is

commonality enough to argue that a NL acquisition model be employed in PL instruction.

www.manaraa.com

 43

A PL has no spoken counterpart. Learning to read and write a language without

extensive prior speaking knowledge of the language is not a trivial undertaking, an

assertion backed by decades of research into congenitally Deaf ASL (American Sign

Language) signers learning English (as a second language because they have no access

acoustically for acquiring the language). Nonetheless, a strong correlation between

proficiency in ASL and English literacy has repeatedly been demonstrated (Kuntze,

2004). Studies of Deaf populations learning written English (or other spoken NLs) have

consistently emphasized the importance of "mastery of a primary language" (i.e. ASL)

for achieving reading competence in a second language (Perfetti & Sandak, 2000)
9
.

Students learning a PL are in a similarly difficult position.

A corollary to the fact that PLs exist only in written form is that, like ASL, they

are visual languages. The sequence of signs in the visual signal of a signed NL is

temporally linear – like the auditory signal in a spoken NL. However, signed NLs are

also spatially non-linear, not just because hands and arms move throughout a 3-D space,

but because qualities of space, like direction, carry meaning. In like manner, the spatial

positions of components in a PL also encode meaning. A prime example is the

requirement or convention (depending upon the language) to utilize indentation to

delineate scope and code blocks. Another is the directionality of assignment statements,

and the requirement that L-values (in most languages) be on the left. A third is the spatial

location of (a) local variables, (b) method/constructor parameters, (c) class/instance

9
 The situation may be more nuanced, as other researchers have described a "bilingual" approach as best

facilitating the acquisition of English by Deaf learners (Subsection 3: Deaf ESL Learners).

www.manaraa.com

 44

variables, and (d) global variables, whose positions define their scope and behavior
10

.

Although all three of these are seemingly syntactic qualities, anecdotally, memorization

does not appear to improve their acquisition to any great degree. This may be because

their patterns of occurrence are less clear-cut or because their meaning – the function they

perform – depends more on context than do other syntactic markers. Counterexamples

using varied contexts may help clarify the meaning of these positional features, but again

are no guarantee.

Because PLs are visual, it also seems plausible that they might be acquired

visually, at least in part. As mentioned above, congenitally Deaf ESL learners of written

English would seem to have comparable, if not similar, L2 acquisition difficulties. There

are, however, crucial differences between (hearing) PL learners and Deaf ESL learners.

First, the brains of native Deaf ASL signers are organized for visual and spatial

processing of language, while those of hearing PL learners are organized for auditory

processing. Second, the brains of the two groups may be organized differently in terms

of how they handle written language. Hearing learners process written languages either

(a) orthographically/syllabically, that is, the letters / syllabograms / words correspond to

sounds; or (b) logographically, where the symbols bear no relation to sound (as in

traditional Chinese script or Japanese kanji). Note that PL learners have already

internalized the orthographic writing system that PLs use. Moreover, visual word

processing is lateralized to the same brain hemisphere as other classic language functions,

indicating some degree of intertwining. Hence, learners may not necessarily visually

acquire and/or process PLs at all. Interestingly, Deaf signers may differ among

10

 Although method parameters are in effect local variables, their positioning in the method signature

allows for them to be initialized outside of the scope of the method body.

www.manaraa.com

 45

themselves in how they process written English – they may do so orthographically or

logographically, and/or they may associate words with ASL signs.

Although the syntactic footprints of PLs are at least an order of magnitude smaller

than those of NLs, this does not mean that PLs are less complex or easier to learn. Each

syntactic component in a PL is semantically broader than any of the more numerous NL

syntactic elements. One way that PLs compensate for this increased generality in

meaning is by combining components into precise sequences or blocks. These blocks can

themselves be encapsulated into methods with user-defined names and reused, a

generative capability that undercuts the first impression of a small footprint when

viewing the body of a main() method. This generative capacity is magnified by the

ability to create new "vocabulary" items ("identifiers") that allow one to perpetually

extend the language in practice. The upshot is that there are virtually no syntactic

components in NLs that have PL counterparts. The implication for learners is that one

early, crucial and often-used L2 learning strategy – reference to analogous syntax

structures in L1 – is simply not available to students learning a PL. Each and every

syntax component in a PL is foreign in all senses of the word.

In linguistic theory, NLs and PLs are also classified as different grammar types.

In 1959, Chomsky described a hierarchy of "formal grammars" that underlie "formal

languages". In very general terms, a formal language is a set of symbols and the

phonemic, syntactic and semantic rules and transformations for combining those symbols

into statements that native speakers would recognize as correctly formed. Chomsky

called the syntactic grammars of NLs "Type 3" regular grammars (finite automata).

They are a subset of "Type 2" context-free grammars (systems of phrase structure), which

www.manaraa.com

 46

are the category to which PLs belong. The crucial difference between the two is that

context-free grammars are "self-embedding" (a form of recursion, as it is understood in a

CS context), giving them "excess generative power" (Chomsky N. , 1959). Were there

no contradicting neurocognitive data, the theoretical differences between the two

grammar types might also argue that the brain processes PLs differently from NLs.

That errors involving mismatched or orphaned braces are common may be a

symptom of this difference in grammar types. Note that errors involving mismatched or

orphaned parentheses are rare – although omissions of an entire pair of opening and

closing parentheses to signal a parameter-less method call are not. Possible factors may

be: (a) Proximity: the distance between opening and closing braces is variable and may

be quite large, as in class definitions; (b) Familiarity: students have experience with the

use of parentheses in math and English; (c) Explicitness: there is no clear-cut mechanism

for indicating the affinity of a closing brace for its opening counterpart. One primarily

linguistic factor, however, may be the self-embedding nature of braces (or indentation in

Python) because PLs permit the nesting of blocks. This "excess generative" recursive

power is a feature of Type-2 PLs that is absent in Type-3 NLs, and the language

apparatus of the brain may simply not have the capacity for processing this kind of

structure. One way to help compensate for this deficiency is to require that students add

a comment after all closing braces to unambiguously indicate their matching partner:

void methodA(int x) {

for (int i = 0; i < 10; i++) {

 if (x > 100) {

 statement;

 } // if

} // for

} // methodA

www.manaraa.com

 47

Although the numerous and severe differences between NLs and PLs seem to

argue against the use of a foreign language model in a CS1 classroom, there is one

overwhelming commonality: the grammars of both are generative, i.e. all languages are

capable of generating an infinite number of statements or utterances. The theoretical

implication of the generative nature of both NLs and PLs for instruction is that features of

open-ended and infinite systems like languages cannot be taught like concepts in a

mathematics curriculum, where computation is relatively straightforward and the critical

thinking piece is recognizing and choosing an appropriate formula. Moreover, the

meaning of words in NLs is learned from repeatedly hearing them used in multiple

contexts, a process that allows one to differentiate them in varied environments. As such,

the predominant CS pedagogy of demonstrating introductory programming paradigms

and expecting students – under the guise of problem solving – to intuitively guess how

ambiguous PL features can be combined, or interpreted in other, often barely

recognizable, contexts, is an unrealistic expectation.

The alternative is a second language model, where the chief principles are

repetition in meaningful and varied contexts, and production that is interactive and

communicative. Foreign language curricula model language features as they are used in

conversation in idealized, but typical social settings, over and over and over, using

multiple contexts that allow learners to perceive the particular features in relief against

varied backgrounds. Likewise, the meaning of PL features is facilitated by (1) exposing

students to their use in multiple, but slightly altered contexts, and (2) giving students

opportunities to use these features in a good number of slightly altered contexts.

www.manaraa.com

 48

Once competence in the use of basic PL features has been acquired, students are

in a position to investigate problems within specific domains, again using the principle of

repetition in meaningful ways, allowing students to assemble an increasing number of

paradigms in their problem solving toolkits. "Problem solving" is actually not the best

phrase for describing a key goal of programming instruction. Rather programming

"literacy" would be a more accurate term, going beyond the minimum requirements of PL

acquisition and even fluency. One might define PL literacy as the ability to use the

language with ever increasing organization, proficiency and sophistication, and to grow

increasingly adept at weighing clarity, conciseness and efficiency of algorithmic designs

among possible coding alternatives. Kuntze discussed the difference between language

acquisition and literacy as they relate to Deaf students learning English:

The definition of literacy as a specific way of using language posited by Olson

and his colleagues offers a useful way of departing from the conventional ideas

related to literacy and thinking about how literacy development can take place

through face-to-face discourse. The current practice is to focus on the acquisition

of English as an educational priority for children who do not have a native

knowledge of English. The reasoning is that they need to have English

competence, for without it, they will not be able to learn to read and thus acquire

literacy. What Olson and Torrance are saying is that the prospect of literacy

development is enhanced through exposure to the use of language in a particular

way and exposure to a specialized mode of thought. Becoming literate is in

effect more than merely the acquisition of special skills, such as word recognition.

This perspective on literacy has far-reaching implications for deaf children, as

well as for other children of language minority backgrounds. (Kuntze, 2004)

The challenge for CS educators, then, is to discover second-language-like pedagogies

that, from day one, help their students first develop competence, then fluency, and then

build on that foundation to develop literacy.

www.manaraa.com

 49

Subsection 2. A Review of SLA Theories Pertinent to Programming Languages

The literature has long expressed doubts about the utility of SLA research to

inform the day-to-day pedagogic practices that foreign language teachers use in the

classroom (Nassaji, 2012). One reason is a difference in focus: researchers have

generally thought of the process of second language acquisition as being mediated

through daily interactions with native speakers or other exposure to native speech, rather

than through formal classroom instruction. Nevertheless, the broad outlines and

implications of a handful of ideas that have arisen in SLA theory have spurred major

shifts in foreign language instruction. Chief among these is the idea that second

languages are acquired via subconscious processes, in much the same way that one

acquires a mother tongue. The pedagogic model consistent with this idea is that learning

in a second language classroom – actual language acquisition – occurs following

repetitive and meaningful exposure to the language and interactive communication.

There is a role for cognitive learning, but it is not the primary mechanism for acquisition.

Theories about second language acquisition prior to 1960 were second-hand

versions of first language acquisition theories, which themselves drew upon ideas from

descriptive linguistics (Bloomfield, 1933) and behaviorism (Watson J. , 1925) (Skinner,

1938). Chomsky's theory of transformational-generative grammar (Chomsky N. A.,

1957) moved the focus of linguistics from description to explanation. Although the

theory in no way claimed to explain the neurological processes for language, it did seek

to model, explain and predict the brain's mental representation of linguistic knowledge.

A transformational-generative model of language consists of a set of rules, and

word/phrase/sentence structures on which these rules operate, that together can generate

www.manaraa.com

 50

(i.e. account for) all conceivable grammatically correct utterances/sentences. Although it

is possible to build a generative model using only phrase structure rules – e.g. "Sentence

→ Noun-Phrase + Verb-Phrase", a transformational model provides key advantages.

Using transformations not only greatly reduces the number of phrase structure rules

needed to describe a language, but allows for a mechanism to see the common "logical

form" of grammatically related sentences (e.g. declarative and interrogative forms, or

active and passive forms). Transformations also allow for a deeper understanding of

sentence structure. Given the sentence "Joe is going outside" and its interrogative form

"Is Joe going outside?", one can formulate a rule that moves the auxiliary verb to the

front of the sentence. Given a more complex sentence like "Those who have any

information can contact the police", transformations help to explain why the auxiliary

"can" (associated with the phrase "those … can contact") moves to the front and not

"have" (inside the relative-adjectival clause).

Transformations in a natural language cannot be observed directly; hence they are

an inferred, underlying mechanism that illustrates the relationships between sentences.

Although the same hold true for PLs, some transformational-generative structures in PLs

can be visible surface syntactic forms, like any other. The most obvious examples are

iterative control structures, which allow for a huge economy in program size.

Chomsky was a vociferous opponent of behaviorism, and in particular, as it

impacted linguistic theory. He held that the preponderance of evidence, particularly the

ease with which children learn language, argued overwhelmingly for an innate "language

acquisition device" (LAD). This "nativist" stance also stood in contrast to Piaget's

cognitive view, which held that general learning processes could explain language

www.manaraa.com

 51

acquisition. One's perception of language acquisition as nativist or cognitive directly

impacts the types of pedagogic strategies one would presuppose to be most effective for

foreign language instruction.

As Chomsky's ideas came to dominate linguistics over the next decade,

researchers began to look at "what learners actually do and produce, as well as the

context in which they learn, rather than merely focus on the description of source and

target languages" (Myles, 2010). What Chomsky meant by "language acquisition" was a

subconscious process via which all children naturally learn a first language using an

innate LAD. The phrase as it is used in SLA, however, has little precision, as end-state

fluencies can vary widely. Young children, and even many of those into their teen years,

can eventually learn a second language with native fluency. Although it is not unusual

for adults to acquire syntactic and semantic fluency or near-fluency, lack of phonemic or

phonological fluency often leaves a detectable accent. Some adults may attain semantic

fluency, but persist in making the same syntax errors. On a different tack, the focus of

some researchers might be literacy. Here, there is again a wide variance. Second

language learners may have native fluency but often poor literacy skills. Others might

have thick accents, but otherwise speak and write flawlessly. In either case, it is possible

that literacy is more a representation of first language (L1) literacy than second language

(L2) proficiency.
11

 When weighing competing SLA claims, then, it is prudent to keep in

mind what types of end-states researchers might be addressing. Given the wide range of

outcomes, a safe baseline definition of acquisition within an SLA context might be

11

 One might speculate, too, that PL proficiency/literacy might reflect the level of a learner's native

language literacy, similar to the correlation of proficiency in ASL with English literacy (Kuntze, 2004)

www.manaraa.com

 52

semantic fluency, the ability to communicate as easily and effortlessly as competent

native speakers.

In the area of foreign language pedagogies (FLP), the mid-1960s was the heyday

of the audio-lingual method, a popular curriculum grounded in behaviorism that

inundated students with drills, prodding them to repeat phrases and sentences uttered by

teachers and audiotapes, with prompts signaling modifications that students were

supposed to incorporate. An example of such a sequence appears below:

Teacher: I am studying history.

Students: I am studying history. (repeating)

Teacher: You.

Students: You are studying history. (replacing)

Teacher: She.

Students: She is studying history. (replacing)

Soon after the audio-lingual method appeared, however, arguments against it began to

surface, suggesting that instructors follow more natural (i.e. communicative) approaches

(Newmark, 1966).

In 1967, Corder proposed that second languages were learned in fundamentally

the same way as first/native languages (L1); that is, speakers acquire a second language

(L2) when they have both (1) sufficient motivation and (2) ongoing exposure to the

language data. He also proposed that L2 learner errors – systematic errors (i.e. evidence

of an underlying language system) as opposed to performance errors, after Chomsky's

competence/performance dichotomy – be viewed not as "mistakes", but rather as

evidence of the ongoing process speakers undergo in constructing an internal grammar of

L2. Theories of second language acquisition, Corder claimed, would need to explain and

take into account such phenomena. He offered the following interaction as an example:

www.manaraa.com

 53

Mother: Did Billy have his egg cut up for him at breakfast?

 Child: Yes, I showeds him. (1)

 Mother: You what?

 Child: I showed him. (2)

 Mother: You showed him?

 Child: I seed him. (3)

 Mother: Ah, you saw him.

 Child: Yes, I saw him. (Corder, 1967)

The three errors made by the Child are not random, but rather evidence of an L1 system

in which the rules for certain grammatical distinctions are still in development. The

Child first uses past and present tense inflection markers simultaneously on a single verb.

She/he then uses the verb show in place of the verb see. The relationship between the

verbs and the use of one for the other may be difficult to understand within an English

grammar context. However, in languages like Hebrew, the two verbs have the same 3-

consonant root, and the semantic distinction between them manifests when show is

inflected using the causation or causal marker. The third error is an exception to the

general past tense conjugation rule (see + past-tense-marker → saw) that the Child has

not fully assimilated.

Systematic syntax errors can also be observed in the programs written by

beginning programming students. In the experimental study (Chapter 1), 8 of the 31

students – 6 from the group with poor memorization scores and 2 from the group with

high memorization scores – incorrectly appended semi-colons to Java method headings in

two ways:

(1) void drawThickVertBlueLine() ; {

(2) void drawThickVertBlueLine() ;

The 8 students made this error despite (a) having the demo program literally at their

fingertips for reference, and/or (b) having memorized and written method headings

www.manaraa.com

 54

correctly in the demo program. The simplest explanation is that having internalized the

syntax rule for semi-colon termination of statements, these students have not yet

perceived a clear distinction between method headings and statements, and therefore

over-generalized the rule to what seemed to be a similar-looking syntactic structure. The

same type of error can be observed in loops and conditional statements commonly and

universally observed and reported elsewhere (Kummerfeld & Kay, 2003) (Spohrer &

Soloway, 1986) (Garner, Haden, & Robins, 2005):

(1) for (int i = 0; i < 10; i++) ; {

}

(2) if (x == 7) ; {

}

(3) while (!done) ; {

}

In the course of the year, a novel spatial error related to the direction of

assignment statements was observed. The topic, a variation of swapping in place, asked

students to rotate the elements of a 3-member integer array. Students were first shown

how to rotate the elements left one position using a temporary 4
th

 variable named save,

positioned to the left of the array in an instructional diagram (Figure 6).

public int[] rotateLeft3(int[] nums) {

int save = nums[0];

nums[0] = nums[1];

nums[1] = nums[2];

nums[2] = save;

return nums;

}

Figure 6. rotateLeft3() instructional code and diagram

www.manaraa.com

 55

When then asked to write the method for rotateRight3(), several students

submitted code and a diagram like those in Figure 7.

public int[] rotateRight3(int[] nums) {

nums[2] = int save; // !!!

nums[1] = nums[2]; // !!!

nums[0] = nums[1]; // !!!

nums[0] = save;

return nums;

}

Figure 7. rotateRight3() direction error

The assignment statements that students wrote mimicked the variable locations used in

the diagram they'd constructed (with the swapping variable arbitrarily placed to the right

of the array). Had the original instructional diagram illustrating the movement of values

for rotateLeft3 () represented the array and the save variable vertically, the error

might not have occurred – although the names of the methods themselves implicitly

convey the assumption of a directionally-specific left-to-right array model. Crucially,

though, the appearance of this error psycho-linguistically argues for the spatial, visual

character of programming languages. Instructionally, this kind of problem might be used

as a counterexample for the types of information one can and cannot glean from

diagrams. The example also serves as a cautionary note against an automatic

instructional assumption that the direction of assignment is self-evident.

Corder used the term "transitional competence" to describe the developing

language system revealed by systematic errors. This intermediary language system

became known later on as an interlanguage (Selinker, 1972). One way to think about the

systematic errors of an interlanguage is that they are evidence of a learner's application of

hypotheses about the input language data to which he/she has been exposed. The

www.manaraa.com

 56

examples of semi-colon termination and assignment direction errors discussed above are

consistent with an interlanguage stage in PL acquisition.

The first major study of systematic errors concluded that the vast majority of

errors were developmental, meaning simply that the acquisition of certain language

features are age-dependent (Dulay & Burt, 1973). The study of 145 five to eight year-old

native Spanish speakers found that the L2 English errors these children made were the

results of over-generalization and the omission of syntactic functors
12

 – the same types of

errors observed in the developing language of native English speakers. They concluded

that the source of L2 errors was not caused by L1 "interference" – children in this age

group borrowing features from L1 "habits" – as a behaviorist model would have

predicted. In the study's discussion section, they advocate for a natural communication

pedagogic model (which they called "creative construction"), where the "attention of the

speaker and hearer is on the "message," or content, of the verbal exchange rather than on

its form [structure, syntax]," arguing that syntax will be acquired naturally via innate

processes.

Several studies demonstrating predictable stages in the acquisition of specific

syntactic features of children's first language had been done by this time. One well-

known case involved asking children aged 5 to 10 whether a blindfolded doll was "easy

to see" or "hard to see". The children who responded that the doll was hard to see, and

were then asked to make her easy to see, removed the blindfold. Older children who

responded that the blindfolded doll was easy to see, and were then asked to make her

hard to see, employed a variety of means to place the doll out of view (Chomsky C. ,

12

 Functors are grammatical morphemes that play a secondary role in semantics, such as "noun and verb

inflections, articles, auxiliaries, copulas and prepositions", such as the underlined elements in "the cat is

meowing at the moon".

www.manaraa.com

 57

1969). Whether similar stages occurred in L2 acquisition was unknown until Dulay and

Burt, in an additional study of three geographically diverse groups of children, reported

that L2 speakers acquire functors in a predictable order; the order, however, was different

from the children's L1 acquisition of functors.

In a study of 73 adult subjects like the one just described, another team of

researchers found a predictable sequence for acquisition of functors in adult L2 English

learners, despite the subjects having (a) different amounts of ESL instruction, (b)

different first languages, and (c) different levels of exposure to English. Again, one

would expect individual differences in the sequence of functor acquisition were the

subjects relying heavily on features borrowed from their different first languages (Greek,

Farsi, Italian, Turkish, Japanese, Chinese, Thai, Afghan, Hebrew, Arabic, and

Vietnamese). Moreover, this sequence was similar to that found by Dulay and Burt in

their study with child L2 learners. The researchers concluded that even though adult L2

learners overall do not attain the native-level skill in L2 as child L2 learners, nevertheless

"they process linguistic data in ways similar to younger learners" (Bailey, Madden, &

Krashen, 1974).

Although certain aspects about language acquisition can be deduced from

systematic errors, later researchers made the point that relying primarily on erroneous

data ignored the potential for identifying strategies, particularly communication

strategies, that native and L2 language learners actually used. A team of researchers in

the 1980s identified a hierarchically ordered list of twelve learning strategies that the

group of children they studied employed when acquiring a second language. The three

www.manaraa.com

 58

initial, and most frequent, strategies were repetition, memorization and formulaic

expressions (phrases that function as units) (Chesterfield & Chesterfield, 1985).

 Several researcher-theorists in the late 1970s, including Bialystok, Swain, Long

and Krashen, worked on different aspects of a model for second language acquisition that

presupposed a dichotomy: conscious, active, intentional learning strategies (explicit)

versus subconscious, passive language acquisition processes (implicit). There was

general agreement that the evidence supported the idea that L2 learners used primarily

implicit processes to acquire grammar. Explicit strategies were used for "monitoring",

that is, noting exceptions to grammar rules, or for corrective tasks such as adjusting

patterns/rules that were learned incompletely or with minor errors. The two primary

requirements for L2 acquisition in this model, per Krashen, are comprehensible input and

meaningful communication / interaction.

Language acquisition does not require extensive use of conscious grammatical

rules, and does not require tedious drill. It does not occur overnight, however.

Real language acquisition develops slowly, and speaking skills emerge

significantly later than listening skills, even when conditions are perfect. The best

methods are therefore those that supply "comprehensible input" in low anxiety

situations, containing messages that students really want to hear. These methods

do not force early production in the second language, but allow students to

produce when they are "ready", recognizing that improvement comes from

supplying communicative and comprehensible input, and not from forcing and

correcting production. (Krashen S. , 1982)

Describing the function of the classroom, Krashen continues:

…we have to provide students with enough comprehensible input to bring their

second language competence to the point where they can begin to understand

language heard "on the outside", read, and participate in conversations. Since they

will be less than fully competent, we also need to provide them with tools for

encouraging and regulating input…

…all second language classes are transitional, and no second language class can

be expected to do the entire job … second language classes are best thought of as

www.manaraa.com

 59

places to gain comprehensible input in early stages, when the acquirer does not

yet have the competence to understand the input provided on the outside.

Interestingly, the implicit/explicit dichotomy echoes a concrete/abstract paradigm,

modeled after Bruner (Brahier, 2005), and developed for teaching Algebra 1 to middle

school students. "Implicit" is bottom-up, data driven, subconscious, concrete. "Explicit"

is top-down, rule-based, conscious and abstract.

Many algebra topics can be addressed in the morning class in a concrete,

manipulative, or real-world context. Then the same topic can be revisited in the

afternoon at the more abstract level typically seen in a secondary algebra class.

The students make a much stronger connection to the subject matter this way.

… higher mathematical content is not out of the reach of younger minds if we

present it concretely. (Fulton, 2005)

Krashen later proposed the Input Hypothesis (Krashen S. , 1985), which claimed

that comprehensible input – and not production (output) – was what spurred language

acquisition. At about the same time, however, Swain argued "that learners not only need

comprehensible language input, but that they also need to produce output in order to

develop their communicative abilities in the L2 to a high standard" (Myles, 2010).

Krashen has continued to dispute this (Krashen S. , 1998), but has only referred to the

ineffective strategy of "forced" production, saying nothing about the role of production

once it occurs naturally. More to the point, one might wonder how Krashen could

ascertain or assess a learner's language acquisition if not by his/her speech or writing, i.e.

one's productive capabilities. Swain, Long and other researchers seem to form a solid

front opposing this view: whatever processes occur in speakers once they comfortably

speak and produce unquestionably accelerate competence. Certainly young children are

motivated to communicate to satisfy their wants and needs more effectively than they

could by showing signs of distress (though that's always available as an emphatic last

www.manaraa.com

 60

resort). Children access the subconscious hypotheses they have about language as they

take part in a back-and-forth productive negotiation with proficient speakers until their

communication has been understood. Their hypotheses are honed in this process, with

their language system adapting itself more precisely to the language surrounding them.

Meaningful communication is just as vital to this kind of language acquisition process for

second language learners.

A similar core principle is involved in mathematics education: one can't learn

mathematics effectively by just reading or listening to lecture; rather you learn

mathematics by doing, applying mathematics to solve problems. In so doing, you activate

knowledge and reinforce it by making connections. Certainly, the same holds true for

computer programming. Although "communicative and comprehensible input" may be

enough for language acquisition, the higher standard of literacy requires production.

The next decade saw a back-and-forth between the nativist camp and those

returning to the prevailing psychology model (which placed much less emphasis on

subconscious processes than is generally accepted today) and more explicit cognitive

models of L2 acquisition, particularly as general learning theories like constructivism

influenced L2 acquisition models. In the mid-1990s, the beginnings of a sociocultural

theory relying heavily on the work of Vygotsky emerged asserting that L2 acquisition

was more complicated than the individual-centered input/output model. Rather it was

heavily influenced by social interaction mediated by symbolic mental functions, in

particular language, using either L1 or L2 or both. Researchers in this camp, for

example, studied Japanese ESL learners and surmised a role for private speech in L2

learning (Ohta, 2001). A first criticism of this study (and others like it) is that, although

www.manaraa.com

 61

Vygotsky-like functions/strategies may have been observed in qualitative studies,

evidence that they actually impact acquisition is assumed. A second criticism is that

Vygotsky's notions of audible private speech and silent inner speech applied to children

(Woolfolk, 2004), not to the college-aged students in this study.

One interesting study reinforced Krashen's assertion that the correction of

production grammar errors by "recasting" (responding to an error by vocalizing the

correct form and having the student repeat it) had little to no influence on acquisition.

Other correction methods, however, were demonstrated to be effective, undermining the

broadness of Krashen's claim (Lyster & Ranta, 1997). A connectionist theory was also

being articulated around this time asserting that a machine learning model based on the

probabilities of patterns, and not innate rules, drives L2 acquisition. The theory,

however, adds little understanding to the discussion, since the complex task of assigning

probabilities cannot possibly be a conscious process; the model simply presupposes a

different mode of neural functioning inside a black box.

www.manaraa.com

 62

Subsection 3. Deaf ESL Learners

As mentioned earlier, research about Deaf ESL learners may offer fresh insight

into how PLs might be learned/acquired. A recent qualitative study looking at how Deaf

children become proficient in English literacy – although lacking in conjecture or theory

– provides a model for how CS educators might fundamentally rethink PL instruction.

The children in the study, who were raised by Deaf parents in a bicultural / bilingual

household, (a) learned ASL as their first language, and (b) grew up in an English

immersion environment, that is, one where written English and signed English were used

extensively. The researchers identified several "themes" that facilitated literacy within

this overarching framework (Mounty, Pucci, & Harmon, 2014).

The first theme is that "each language supports the development of the other," that

there is a "bidirectional relationship" between ASL and English literacy, wherein the

latter also improves skill in the former. One girl is described as at first translating

English words using their literal signed counterpart, but "increasingly choose[ing] signs

that matched the meanings conveyed by words and phrases in a given passage," gaining

increasing automaticity in translation ability as English literacy progressed.

The second theme is "providing a print-rich culture for ongoing exposure to

English." Parents guided their children in the use of computers for communication or

literacy tasks, read them bedtime stories, and encouraged them to write in "daily journals"

and read "newspapers, magazines, books and comics". Like their hearing counterparts,

the Deaf parents would read books, like Dr. Seuss, to their children over and over. They

would not only translate the stories into ASL, but would use prosodic features (facial

www.manaraa.com

 63

expressions, gestures) to clarify meaning. Crucially, though, they would fingerspell key

English words, turning each written word into a living visual language form.

This last parental interaction is in fact the third theme, that fingerspelling is a

bridge between ASL and English and that children should be exposed to fingerspelling

even as toddlers. The unspoken implication is that the ongoing exposure to these

fingerspelled English words, intermediate forms occupying a space between the ASL

signs for the English words and the written English words themselves, provides these

Deaf children with a visual English counterpart to their hearing peers' spoken English.

Critically, this would partially make up for the advantage the latter have in already being

native speakers of the language they are learning to read. Although this would not seem

to substantially benefit Deaf children in the task of acquiring English syntax, there is no

question that it would enrich their English language lexicons and lessen the cognitive

load when trying to learn other English language features.

The fourth theme is related to socio-cultural theory: children "must have

opportunities to interact with and observe ASL/English bilingual adults" both in school

and at home. The types of activities described are (a) situations that clarify

metalinguistic awareness, i.e. reveal the relationship of language to cultural behaviors,

(b) metacognitive strategies to infer the meaning of unfamiliar words, (c) strategies for

recognizing errors, (d) differences between formal and informal language use, and

(e) providing multiple contexts for words – and signs – that have multiple meanings so

that correct meanings can be deduced from the context. This last activity seems to be of

particular importance. Hearing children have a distinct advantage in their ready exposure

www.manaraa.com

 64

to the use of English language features in multiple contexts, whereas opportunities for

Deaf children in this regard are much more constrained.

www.manaraa.com

 65

Subsection 4. The Role of Context

A research team at MIT studying the acquisition of words by one child videotaped

over the first three years of his life has shown "that words used in distinctive spatial,

temporal, and linguistic contexts are produced earlier, suggesting they are easier to learn"

(Roy, Frank, DeCamp, Miller, & Roy, 2015). One impetus for the study was the idea by

first language acquisition theorists – including J. Bruner, E.V. Clark and E.A. Cartmill –

that the quality of extra-linguistic contexts can affect language learning in children. The

measure of "word learning" in this study was the Age of First Production (AOFP): "the

point at which the child first made use of a phonological form with an identifiable

meaning." Although repetition was a useful predictor for acquisition of concrete nouns, it

was not predictive for predicates or closed-class words (e.g. here, more, if, but). A better

predictor for these latter two classes of words were shorter MLUs (mean length of

utterance), defined as the complexity of the sentences in which they were used.

However, the best predictor of when the child would connect meaning (semantics) to the

sound (word) – even higher than frequency/repetition – turned out to be the distinctive

context of a word. Three distinctive contexts were defined: "the location in physical

space where it [the word] is spoken, the time of day at which it is spoken, and the other

words that appear nearby it in the conversation", i.e. space, time and language. The

authors concluded:

The more tied a word is to particular activities, the more distinctive it should be

along all three measures, and the easier it should be to learn. Consistent with this

hypothesis, contextual distinctiveness (whether in space, time, or language) was a

strong independent predictor of the child's production…

…The three distinctiveness variables showed strong correlations with one another

and striking consistency as predictors of the age at which words were first

produced. This consistency supports the hypothesis that each is a proxy for a

www.manaraa.com

 66

single underlying pattern: Some words are used within coherent activities like

meals or play time (e.g., breakfast, kick), whereas others are used more broadly

across many contexts. These differences may be a powerful driver of word

learning.

In a TED talk, principal investigator Deb Roy spoke informally about this study:

Every time my son would learn a word, we would trace back and look at all of the

language he heard that contained that word. And we would plot the relative length

of the utterances. And what we found was this curious phenomenon, that

caregiver speech would systematically dip to a minimum, making language as

simple as possible, and then slowly ascend back up in complexity. And the

amazing thing was that bounce, that dip, lined up almost precisely with when each

word was born -- word after word, systematically. So it appears that all three

primary caregivers -- myself, my wife and our nanny -- were systematically and, I

would think, subconsciously restructuring our language to meet him at the birth

of a word and bring him gently into more complex language. And the

implications of this -- there are many … feedback loops. Of course, my son is

learning from his linguistic environment but the environment is learning from

him. That environment, people, are in these tight feedback loops and creating a

kind of scaffolding that has not been noticed until now. (Roy D. , 2011)

It's a near certainty that this precise interaction is outside of Krashen's notions of

comprehensible input and meaningful interaction, but it would fit comfortably into a

socio-cultural language acquisition model. The problem is that this type of scaffolding,

per se, doesn't explain how neglected children acquire language. It might, however, help

delineate the types of interactions that children need to achieve higher levels of literacy.

Catherine Snow, an education professor at Harvard, reiterated the importance of

encountering words in multiple contexts, both for native and non-native English language

speakers:

Well, what we decided to do was go beyond the kind of vocabulary instruction

that we know doesn't work very well. A list of twenty words, study the

definitions, use the words in a sentence, take a quiz on it at the end of the week,

then next week go on to another twenty words. That doesn't work for lots of

reasons. It's easy enough to do it, and to forget those words. In order to have a

high probability of learning a word, you need to encounter it fifteen, twenty times.

www.manaraa.com

 67

Typically these are words that have slightly different meanings in different

contexts. So it's important to encounter them in different content areas. If you

think about a word like variable, in math a variable is, of course, a technical term.

But in history you might talk about variable responses to the change in

government. Or in science you might talk about a variable in an experiment. So

recurrence in a variety of contexts. Opportunities for students not just to read

the words and write with the words, but also to use them. (Arditti & Skirble,

2010)

www.manaraa.com

 68

Subsection 5. Neurocognitive and fMRI Studies

Finally, there remains the critical issue of whether the human brain processes NL

and PL tasks in fundamentally similar ways. Although evidence demonstrating that NLs

and PLs are acquired in similar ways would make for a much more convincing argument

for the use of language pedagogies in PL instruction, the use of similar or identical brain

areas when processing both language types would provide a strong argument as well.

Linguistic theories about syntax have been greatly informed by early aphasia

studies, in which injuries to the brain affected features of language processing. Broadly

speaking, Broca's aphasia was found to impact expression/production; Wernicke's

aphasia caused receptive/understanding difficulties; and conduction aphasia caused an

impaired ability to repeat prompted input, as if the communication channel between

seemingly well-preserved expressive and receptive functions was damaged. Imaging

studies later correlated several of the 52 Brodmann areas of the cerebral cortex with these

aphasic conditions. For example, Broca's aphasia mapped to Brodmann areas 44 and 45;

Wernicke's aphasia mapped to Brodmann area 22; and conduction aphasia mapped to

Brodmann areas 39 and 40.

An internet search for possible links between aphasia and computer programming

resulted in just one anecdotal reference that supported a causal link with language:

Working as an engineer for an aeronautical firm, Christopher was 33 when he had

a stroke, which left him with some physical weakness and moderately severe

aphasia. His job was 'relatively complicated', involving computer programming,

mathematics and other technical skills… Six months after his stroke, Christopher

went to see his boss and persuaded him to let him try some programming: 'I told

him my predicament and I said: "Could I borrow a spec … a specification?" –

Because this was the specification I used to programme a computer software.

And I couldn't do it. – I thought I could do it and I … thought I could do it and …

then again it wasn't surprising. – That event told me I could never do it again.'

(Parr, Byng, & Gilpin, 1999)

www.manaraa.com

 69

Within the last few years, researchers have used fMRI – a non-invasive technique

– to visualize and associate regions of the brain that become activated with specific

neural processes/tasks. One such neurocognitive study demonstrated that the "syntax-

like" operations involved in understanding and solving algebra tasks are processed in

areas of the brain associated with "representation of quantity, Arabic numerals, and

calculation", distinct from areas associated with language tasks. The authors had cited

previous studies of neurological patients suggesting that the two abilities were

physiologically dissociated:

Particularly relevant is the case of patients with agrammatic aphasia, who exhibit

intact understanding of the rules, structure, and operations of abstract algebra but

perform at chance levels in standard assessments of language (Monti, Parsons, &

Osherson, 2012).

Key evidence that PLs are processed like NLs came in a recent fMRI study of 17

first-year programming students that looked specifically at comprehension of computer

programs. Short programs (fewer than 20 lines) which performed string-reversal, array

searching/sorting, and integer-related tasks were shown to participants. To measure

comprehension, research subjects were asked to determine the output for each program.

For control tasks, participants were also given a duplicate set of these same programs, but

containing a variety of syntax errors, such as (a) missing identifiers, and (b) opening

parentheses, brackets, and quotations that were matched with incorrect closing characters.

A baseline of brain activity for the task was gotten by asking participants to detect these

errors. The reasoning was that because participants were occupied with scanning the

surface form of each error-containing program – rather than trying to understand what the

program did – these measurements could serve as controls to filter out the contribution

www.manaraa.com

 70

from non-relevant baseline visual and audio brain processing. When measuring program

comprehension, the researchers found activation over baseline in Brodmann Areas (a) 6

and 40, and (b) 21, 44 and 47. The first group is associated with comprehension, the

second group with language processing (Siegmund, et al., 2014). More specifically, BA

40 is associated with semantic and phonological reading processes. BA 21 is associated

with semantic retrieval, linguistic inference, word form processing, and recognizing

words with similar meanings. BA 44 is associated with semantic tasks and, together with

BA 45 in the left hemisphere, forms Broca's area, which when damaged results in an

impairment of the ability to speak fluently and grammatically, or to write. Specific tasks

include syntactic and grammatical processing and sentence comprehension. BA 47 has

been associated with a range of language tasks: semantic processing, coding and

retrieval; phonological processing, reading single words, lexical inflection and intonation

aspects of prosody. CS Professor Chris Parnin at North Carolina State University

summarized the study's most significant results:

The team found a clear, distinct activation pattern of five brain regions, which are

related to language processing, working memory, and attention. The programmers

in the study recruited parts of the brain typically associated with language

processing and verbal oriented processing (ventral lateral prefrontal cortex). At

least for the simple code snippets presented, programmers could use existing

language regions of the brain to understand code without requiring more complex

mental models to be constructed and manipulated.

Interestingly, even though there was code that involved mathematical operations,

conditionals, and loop iteration, for these particular tasks, programming had less

in common with mathematics and more in common with language.

Mathematical calculations typically take place in the intraparietal sulcus,

mathematical reasoning in the right frontal pole, and logical reasoning in the left

frontal pole. These areas were not strongly activated in comprehending source

code. (Parnin, 2014)

www.manaraa.com

 71

Christian Kästner, a professor at Carnegie Mellon University and the study's

second author, was upbeat about the possibility of psycholinguistic similarities between

PLs and NLs:

There is no clear evidence that learning a programming language is like learning a

foreign language, but our results show that there are clearly similarities in brain

activations that show that the hypothesis is plausible. (Amirtha, 2014)

It is presently not possible to suggest, that because PLs are processed in the same areas of

the brain as L1s and L2s, that they are acquired in parallel ways as well. Other types of

studies would need to be done to convincingly demonstrate this kind of association.

Nonetheless, this study provides sufficient and intriguing evidence to argue for

investigating the efficacy of language pedagogies in computer programming instruction.

www.manaraa.com

 72

Section 4. SLA Instructional Strategies for Computer Programming

…we cannot really teach language, we can only create conditions in which it will

develop spontaneously… (Corder, 1967).

It [language acquisition] does not occur overnight, however.

Real language acquisition develops slowly. (Krashen S. , 1982)

Most contemporary language teachers employ interactive instructional strategies,

be it immersion or some variation of the communicative approach. Both of these

emphasize activities where students communicate in, and hear and read authentic

examples of, the target language. This stands in stark contrast to the dominant pedagogic

model used by college and secondary CS0 or CS1 instructors. The abstract top-down

approach they overwhelmingly employ – lecturing about, then referring to, the syntax

rules of a programming language's grammar to construct statements and programs –

might as well have been lifted from an early 20th-century Latin classroom, as if

instructors were teaching a dead language.

SLA theory is hardly settled. If anything, though, there is sufficient evidence and

agreement about the following principles:

a. Second language acquisition is implicit, not consciously learned.

b. Second language acquisition is facilitated by repeated exposure and interaction in

varied meaningful contexts.

c. Second language acquisition takes considerable time.

Specific instructional strategies informed by these principles were designed and used in

my introductory CS classes and are described in this section. Anecdotally, they appear to

help all students deepen their understanding of PL concepts and quicken the acquisition

of PL proficiency.

www.manaraa.com

 73

Subsection 1. Syntax: Memorization

Although the experiment described in Chapter 1 was not convincing – a moderate

inverse correlation that fell short of the 95% confidence level – nevertheless, for several

years now, I have observed that a memorization strategy helps students acquire the ability

to minimize or avoid syntax errors. What might be the mechanism underlying this?

Successful memorization of programming paradigms – written by a "native speaker", i.e.

a SMC programming instructor – requires that students study a text meticulously, over

and over, until they can reproduce it perfectly. One might think of this process as

functionally mimicking Krashen's comprehensible input requirement: bombarding the

brain with data. Like young children learning a NL, subconscious, passive and innate

processes internally construct syntactic rules by induction from the patterns in the data.

Even a program fragment composed of a few methods has enough statements and

headings to sufficiently define the patterns for inferring the placement of a statement's

syntactically meaningful punctuation markers (semi-colons, commas, parentheses, curly

braces) with respect to its identifiers. An apt metaphor can be found in the film The

Karate Kid, when Mr. Miyagi directs Daniel to perform four days of repetitive chores –

sand-the-floor, wax-on/wax-off, paint-the-fence, side-to-side. The motions – surrogates

for the comparable movements of defensive blocks – worked their way into his muscles'

memories.

In preparation for their first project, students typically receive instruction in

(a) the mathematics of the inverted y-axis graphing plane that Processing employs;

(b) the mechanics of RGB color; and (c) primitive methods for rendering lines and

rectangles. They are then given the task of writing a program to reproduce a Piet

www.manaraa.com

 74

Mondrian painting (Part 2, Chapter 2, Section 2). They are asked to memorize the starter

code below, which produces the drawing in Figure 8:

void setup() {

 size(479,550);

 background(0);

 yellowRect();

 redRects();

}

void yellowRect() {

 noStroke();

 fill(255,215,0);

 rect(5,3,32,93);

}

void redRects() {

 fill(255,0,0);

 noStroke();

 rect(43,3,162,93);

 // draw horz black line

 stroke(0);

 strokeCap(SQUARE);

 strokeWeight(8);

 line(42,11,42+163,11);

}

Figure 8. Output and Detail of Starter Code for Piet Mondrian Painting

Students are given no instruction regarding syntactic rules for method headings, bodies or

primitive statements. Rather they appear to acquire these rules after memorizing the

paradigm starter code and are easily able to complete the program with the approximately

20 parameter-less methods needed for rendering the remaining rectangles. They are also

instructed to fabricate accurate and meaningful names for the methods. Language-wise,

this "production" part of the assignment prods students to discover how the language

operates via the ongoing feedback they receive as they run the program-in-construction

rendering the image-in-progress. The pedagogic program-run-reconsider-modify loop

serves the function of "meaningful interaction", allowing the user to internally construct

www.manaraa.com

 75

and adjust semantic information pertaining to primitive method parameters, the ordering

of statements, method calls, and so forth.

 After completion of this unit, students are then asked to memorize progressively

more complete versions of the Ricocheting Comets program (Part 2, Chapter 2,

Section 3). Memorization at this stage has two objectives: (a) students are quickly, but

progressively, exposed to the syntactic form of conditional statements, variables, iteration

and arrays in the PL equivalent of simple, but authentic, sample dialogues in the target

language; and (b) having been thus primed for familiarity with the building blocks of the

program, the cognitive load is lessened when students subsequently perform exercises

meant to convey the meaning of those blocks (described in Subsection 2). The syntactic

expectation for the initial memorization part is that by exposing students to Java's most

common syntactic structures and markers in multiple contexts
13

 in a short and

uncomplicated, but evolving program, they will implicitly learn and acquire their correct

syntactic usages. The foreign language classroom counterpart is memorization or

repeated study of a unit dialog.

At first, students are guided incrementally through the construction of a

procedural version of the program, which renders a single comet. Guided instruction

then helps them convert this to an object-oriented (OO) program, so that multiple comets

can be rendered. The semantic expectation is not that students master any of these PL

constructs, but that they begin to gain familiarity by seeing their use in a complete and

working program for this particular domain type (e.g. using conditional statements to

13

 Note that the strategy of multiple contexts has long been used in mathematics teaching. Counter-

examples are one way to emphasize pertinent features and applicable uses. Algebraic concepts – simple

examples being perfect squares or the quantity (a+b)
2
 – are presented with their geometric counterparts and

representations. Algebra tiles are wildly successful in visually modeling algebraic factors and products.

www.manaraa.com

 76

reverse the vector of direction when the comet objects come into contact with window

boundaries). Both the procedural and OO versions of the program for a single comet

appear below, followed by the final OO version for multiple comets, which employs

iteration to traverse an array (a for-loop that uses a counter variable for initialization and

a for-each loop for movement). By the end of the unit, most students will have acquired

the ability to program with proper syntax, to find and correct unintentional syntax errors,

and to carry this knowledge forward in subsequent programming assignments. There will

be a few students who will have not fully learned these objectives, but they will make

many fewer of the kinds of novice systematic errors discussed in Section 3, allowing

them a quicker and less overwhelming "monitoring" process than would normally be the

case with struggling students.

Procedural Version of Ricocheting Comets

// variable declarations

int x;

int y;

int directionX;

int directionY;

color clr;

void backgroundTransparent() {

 fill(0,0,0,12);

 rect(0,0,width,height);

}

void setup() {

 size(800,600);

 // variable assignments

 x = 15;

 y = 15;

 directionX = 10;

 directionY = 4;

 clr = color(255,0,0);

 ellipseMode(CENTER);

 background(255,0,0);

}

void draw() {

 backgroundTransparent();

www.manaraa.com

 77

 fill(clr);

 ellipse(x,y,30,30); // use x,y for drawing

 x = x + directionX; // update x

 if (x >= width || x <= 0) {

 directionX = -directionX; // update directionX

 clr = color(random(255),random(255),random(255));

 }

 y = y + directionY; // update y

 if (y >= height || y <= 0) {

 directionY = -directionY; // update directionY

 clr = color(random(255),random(255),random(255));

 }

}

Object-Oriented Version of Ricocheting Comets

// main.pde for a single comet

Comet c; // declare object variable

void backgroundTransparent() {

 fill(0,0,0,12);

 rect(0,0,width,height);

}

void setup() {

 size(800,600);

 ellipseMode(CENTER);

 c = new Comet(15,15,10,4,color(255,0,0)); // calls constructor

}

void draw() {

 backgroundTransparent();

 c.display();

 c.move();

 c.bounce();

}

// Comet.pde

class Comet {

 // instance variables

 float x;

 float y;

 float directionX;

 float directionY;

 color clr;

 // constructor

 Comet(float xIn, float yIn, float dirX, float dirY, color clrIn) {

 this.x = xIn;

 this.y = yIn;

 this.directionX = dirX;

 this.directionY = dirY;

 this.clr = clrIn;

 }

 void display() {

 fill(this.clr);

www.manaraa.com

 78

 ellipse(this.x, this.y, 30, 30);

 }

 void move() {

 this.x = this.x + this.directionX;

 this.y = this.y + this.directionY;

 }

 void bounce() {

 if (this.x >= width || this.x <= 0) {

 this.directionX = -this.directionX; // update directionX

 this.clr = color(random(255), random(255), random(255));

 }

 if (this.y >= height || this.y <= 0) {

 this.directionY = -this.directionY; // update directionY

 this.clr = color(random(255), random(255), random(255));

 }

 }

}

// end of class

// main.pde for multiple comets

Comet[] comets; // declare object variable

final int NCOMETS = 500;

void backgroundTransparent() {

 fill(0,0,0,12);

 rect(0,0,width,height);

}

void setup() {

 size(800,600);

 ellipseMode(CENTER);

 comets = new Comet[NCOMETS];

 // for loop using a counter variable

 for (int i = 0; i < NCOMETS; i++) {

 Comet c = new Comet(15, 15, random(1,10), random(1,10),

color(255,0,0));

 comets[i] = c;

 }

}

void draw() {

 backgroundTransparent();

 // for-each loop

 for (Comet c : comets) {

 c.display();

 c.move();

 c.bounce();

 }

}

www.manaraa.com

 79

Subsection 2. Semantics: Setting Components in Relief

Once students have finished memorizing the Ricocheting Comets program in its

three incarnations, they have intimate familiarity with the structures of both the

procedural and OO versions of the program. However, their understanding of how the

individual components work together – the semantics, the logic, and the program flow –

is poor. Instructors often make the assumption that presenting a concept once with

practice – or even re-teaching – is sufficient for students to learn it. To the contrary,

language arts teachers have internalized the statistic, earlier cited, that it takes 15-20

times of hearing a word, phrase or pattern in multiple contexts before a student acquires

mastery. Foreign language instructors often put that number 3-4 times higher.

With access to both versions of the program, students are now charged with the

task of converting the procedural version of the Ricocheting Comets program to the OO

version in 9 discrete progressive steps. Students are cautioned to incorporate only those

components needed to effectuate the specific changes for each step, taking care to avoid

adding variables or commands responsible for other behaviors. The learning objective is

for students to discover exactly which code fragments working together elicit which

specific runtime behaviors, and through this process gain a fuller understanding of the

program logic and its flow. The instructions (below) guide students to initially create a

class module with a completely empty body; write a default constructor and call it in

setup() to construct a new object; create instance variables and initialize them; transfer

procedural drawing methods to the class; and call these object methods in the main

module using dot notation. The stepwise nature of the exercise pinpoints areas of student

misunderstandings, and facilitates their clarification through guided discovery.

www.manaraa.com

 80

A key feature of this strategy is that the instruction not be about re-teaching, but

rather about re-constructing the program in a different order from the way it was taught,

coming at it from a different angle, as it were. This slightly altered approach provides a

fresh perspective for each functional component of the program, setting it in relief against

the seemingly amorphous program background as a whole, incrementally giving each its

due, providing enough of a different context for each constituent part that its meaning and

function can better become apparent. The foreign language classroom counterpart is to

what follows memorization or repeated study of a unit dialog: exercises that pinpoint

particular features in that dialog for students to focus on. In spirit, this strategy has much

in common with Deb Roy's Predicting the birth of a spoken word study, described earlier

(Roy, Frank, DeCamp, Miller, & Roy, 2015).

This strategy is often implemented as a group assignment, with two or three

students crowding around one computer as the academically weakest group member

"drives", does the actual keyboarding. A group needs the instructor to "sign off" on each

step before they can proceed, to verify/assess each member's understanding of the step's

primary learning objective, and his/her appreciation for how the program design has

advanced from the immediately previous version.

Converting bounceDiag to the Comet class program

Name of program: Comet01

Methods: setup(), draw(), size(), ellipseMode(), backgroundTransparent()

Run: Window is 800 W x 600 H, with a black transparent (transparent/alpha value=12)

background.

Name of program: Comet02

Add a tab for the Comet class. Write a simple Comet class, its body is empty.

Run: Same as Comet01

www.manaraa.com

 81

Name of program: Comet03

In the Comet class, add the constructor.

In the main file, create a Comet variable c and initialize it in setup() with the new

command, which calls the constructor, which creates a Comet object.

Run: Same as Comet01

Name of program: Comet04

Add the 5 instance variables to the class: x, y, directionX, directionY, clr.

Initialize these instance variables in setup() using the Comet variable c with dot

notation. Their values will be, respectively: 15, 15, 10, 4, color(255,0,0)

Run: Same as Comet01

Name of program: Comet05

Add an int parameter xIn to the constructor, and – IN THE CONSTRUCTOR -

initialize the instance variable x using the new parameter xIn, and using the keyword

this with dot notation.

In setup(), pass the value 15 as an argument for this new parameter.

Comment OUT (but do not delete) the line in setup() that initialized the instance

variable x.

Run: Same as Comet01

Name of program: Comet06

Same directions as Comet05. Create the 4 remaining instance variables y, directionX,

directionY, clr. The constructor parameters corresponding to those instance variables

will be called yIn, dirX, dirY, clrIn.

Run: Same as Comet01

Name of program: Comet07

In setup(), delete the 5 lines that were commented out.

Add a class method called display() that draws the red circle at the initial point (x, y).

Use the keyword this with dot notation inside this method when referring to any of the

class's instance variables.

Use/call this method in draw(), again using the Comet variable c with dot notation.

Run: A red circle is drawn in the top left corner of the window.

Name of program: Comet08

Add a class method called move() that causes the red circle to move.

Use the keyword this with dot notation inside this method when referring to any of the

class's instance variables.

Use/call this method in draw(), using the Comet variable c with dot notation.

Run: A red circle moves right and down until it disappears off screen.

www.manaraa.com

 82

Name of program: Comet09

Add a class method called bounce() that causes the red circle to reverse its horizontal or

vertical direction depending upon which window edge it encounters.

Use the keyword this with dot notation inside this method when referring to any of the

class's instance variables.

Use/call this method in draw(), using the Comet variable c with dot notation.

Run: A red circle move across the screen, bouncing off of all 4 edges.

www.manaraa.com

 83

Subsection 3. Semantics: Revealing Underlying Transformational Structure

Even after students have incrementally converted the procedural version of the

Ricocheting Comets program to an OO version, there remains considerable confusion on

two aspects of constructor semantics: (1) the sequence of arguments in the constructor

call must correspond to the order of parameters in the constructor definition; and (2) the

mechanism by which argument values in a new constructor call are implicitly transferred

into the constructor and assigned to its parameters.

Instructors already know how to clarify the confusion regarding the sequence of

arguments by using the concept of overloaded methods with different method signatures.

The example and counter-example below are typical of such instruction.

Overloaded Constructors that can distinguish between argument calls because

the variable types of sequence positions differ

c = new Comet(15, 10, color(255,0,0));

c = new Comet(color(255,0,0), 15, 10);

Comet(float x, float y, color clr) {…}

Comet(color clr, float x, float y) {…}

Overloaded Constructors that cannot distinguish between argument calls because

the variable types of sequence positions are identical

c = new Comet(15, 10);

c = new Comet(10, 15);

Comet(float x, float y) {…}

Comet(float y, float x) {…}

However, the confusion over the implicit assignment of argument values to

method/constructor parameters is predictable given students' familiarity with the explicit

syntax for assignment of values to variables using the assignment operator. Although the

mechanism by which arguments are assigned to parameters may appear to be self-evident

www.manaraa.com

 84

to instructors, the reality is that the surface syntax of the language does not explicitly

make clear what is happening
14

 (Figure 9).

// main.pde

c = new Comet(15,15,10,4,color(255,0,0));

// implicit assignment of argument values from constructor call to parameter variables

// Comet.pde

Comet(float xIn, float yIn, float dirX, float dirY, color clrIn) {…}

Figure 9. Surface Syntax.

Constructor Call Arguments → Assignment of Values to Constructor Parameters

 The mechanism can be made explicit via a transformational model that posits interme-

diate underlying syntactic structures that clarify the implicit nature of the PL grammar

definition (Figure 10).

// main.pde

c = new Comet(15, 15, 10, 4, color(255,0,0));

// Comet.pde

Comet(float xIn, float yIn, float dirX, float dirY, color clrIn) { … }

// #1: Pair argument values with corresponding parameter variables

Comet(float xIn=15, float yIn=15, float dirX=10, float dirY=4,

 color clrIn=color(255,0,0)) {

}

// #2: "promote" parameter-value pairs directly into method body and

// transform them into syntactically correct assignment statements

Comet() {

 float xIn=15;

 float yIn=15;

 float dirX=10;

 float dirY=4;

 color clrIn=color(255,0,0);

}

Figure 10. Transformational Model: Positing Intermediate Structures that clarify both

(a) assignment of argument values to parameters and

(b) how parameters behave like local variables

14

 Python does have a mechanism for assigning values to parameters in function calls, e.g. printinfo(

age=50, name="miki"), though how these values are explicitly assigned in the function body is still left

obscure. Like C++, Python also has a mechanism for default argument values, which provides partial

transparency for how such assignments occur in general. Unfortunately, Python also has a steep learning

curve, particularly for high school students. (Konidari & Louridas, 2010)

www.manaraa.com

 85

The first intermediate structure shown in Figure 10 illustrates how argument values can

be paired with their corresponding parameter variables using the assignment operator (=).

The second intermediate structure depicts how parameter-value pairs are then "promoted"

to the method body and transformed into independent assignment statements,

underscoring that parameter variables behave just like any other locally defined variable.

Instruction that uses these transformations to model a number of successive

constructor/method calls with different argument values allows students to integrate this

alternative assignment scheme into the explicit assignment schema they already possess.

 Like Chomskyan transformations, the transformations in this example are

explanatory, but in a way slightly different from the former. Chomskyan transformations

operate on a single hidden underlying structure to generate different surface structures

(sentences). The common underlying structure clarifies how the different outputs are

related. In contrast, the hidden intermediate structures in this PL example are generated

by transformations that combine elements from both a constructor or method call and the

constructor or method definition. These underlying intermediate structures demonstrate

the implicit mechanism that connects the public face of a syntactic element (method /

constructor) to its inner workings using the kind of PL statements that students are

already familiar with. Unlike NL generative grammars, no claim is (yet) made that these

underlying structures reflect a mental representation of the PL, though semantically they

are certainly plausible. Instead, the PL structures are pedagogic in nature, intended to

scaffold conceptual understanding. Like generative structures, however, they provide

deeper insight into how the surface structures of the language operate.

www.manaraa.com

 86

Subsection 4. Semantics: for-loop Transformations

Understanding the workings and usages of for-loops is another formidable

semantic construct with which novices struggle. When the counter variable functions

only to enumerate the number of repetitions, grade-level (i.e. proficient in Algebra 1)

freshmen encounter few logistical problems. When given direct instruction along with

custom graphics programs with which they can experiment – by modifying the counter

variable's initial value, terminating condition, and increment/update value – and inspect

the runtime output, they readily learn how to calculate the number of repetitions,

including whether the settings will result in an infinite loop or execute for zero iterations.

Note that this does not mean students are completely comfortable with the language

semantics, or understand how loops operate beyond these surface calculations. They can,

though, program with loops in this simple manner without much difficulty. A graphics

program for such instruction appears in the Ricocheting Comets unit (Part 2, Chapter 2,

Section 3).

Difficulties arise, however, when the counter variable is used to calculate values

within the body of the loop. Consider a problem asking students to use iteration to draw

four equally spaced concentric squares inside a window's client space that measures 200

x 200 pixels, per Figure 11. This exercise is the first in a set of 4 or 5 problems with

similar solutions.

www.manaraa.com

 87

Figure 11. Concentric Squares. Left: Desired Output.

Right: Red Lines to help with calculations

This type of problem is amenable to both the concrete-abstract approach (Part 1, Chapter

2, Section 3, Subsection 2) and the syntactic transformations approach. Solving this

problem in a concrete manner is not difficult, but even this part of the instruction is not

left to chance. Helper lines (in red above) are drawn to help students discern the 10 equal

subdivisions of the 200-pixel width and height for calculating intervals and offsets.

Novices can often be overwhelmed at the start of new unit, not even knowing

where to start, because too many things are required of them at once. The mathematical

calculations may be trivial, but their initial occurrence in an unfamiliar context can be

disorienting. For this reason, the calculations for the parameters needed for drawing the

square were separated into two parts. Students were first asked to calculate just the top-

left coordinates of the 4 squares, using a constant 200 pixel value for the size, and to

postpone dealing with squares extending beyond the right/bottom window borders.

www.manaraa.com

 88

public static void drawSquares(Graphics g)

{

 g.drawRect(20, 20, 200, 200);

 g.drawRect(40, 40, 200, 200);

 g.drawRect(60, 60, 200, 200);

 g.drawRect(80, 80, 200, 200);

}

Once students correctly calculated the top-left coordinates, they were asked to calculate

the width and height of each square. The Concrete program with values hard-coded for

all 4 squares appears below.

 // Concrete
 public static void drawSquares(Graphics g) {

 g.drawRect(20, 20, 160, 160);

 g.drawRect(40, 40, 120, 120);

 g.drawRect(60, 60, 80, 80);

 g.drawRect(80, 80, 40, 40);

 }

The gap between this solution and its iterative equivalent (Abstract 2, below) is generally

too wide for most students to bridge. This is the case despite the fact that students had

just completed a unit where they used the same Algebra 1 T-Table technique to calculate

slope-intercept expressions as that used in the Abstract 2 iterative solution. The context,

however, was different: nested for-loops that generate arithmetic patterns of line-text

output (Part 2, Chapter 2, Section 7). Until students have enough experience applying a

concept in multiple contexts, they are often either reticent, or have no firm idea where, to

begin in a new environment. Note also that had 0-based counting been used, the

www.manaraa.com

 89

algebraic expressions would have reflected the Concrete method's values for the largest

square drawn (for-loop values and assignment statements appear in comments below).
15

// Abstract 2: 1-based counting

// T-Table: Implementing slope-intercept algebraic expression
public static void drawSquares(Graphics g) {

 for (int i = 1; i <= 4; i++) { // i = 0; i < 4; i++

 int xy = 20 * i; // xy = 20 * i + 20

 int wh = -40 * i + 200; // wh = -40 * i + 160

 g.drawRect(xy, xy, wh, wh);

 }

}

Semantically, the two methods are equivalent. The Abstract 2 one, though, is a complex,

abstract transformation of the Concrete method in which the algebraic expressions for

each square's top-left corner and width/height are dependent upon the counter variable.

There is, however, an intermediate solution (Abstract 1 below) that sets initial values and

uses the slopes to increment/update the square variables without the need to involve the

counter variable.

 // Abstract 1

 // Assign initial values, Increment/decrement steps each iteration
 public static void drawSquares(Graphics g) {

 int xy = 20;

 int wh = 160;

 for (int i = 1; i <= 4; i++) {

 g.drawRect(xy, xy, wh, wh);

 xy = xy + 20;

 wh = wh - 40;

 }

 }

Students are asked to solve the set of 4-5 problems in these 3 different ways – with

instruction preceding each round to address the particulars of each problem –

15

 Whether one uses 0-based or 1-based counting is immaterial, as no array elements or String characters

are being indexed. 1-based counting was used in the text line output exercises students solved in the prior

unit, as it was consistent with line counting (what would a line 0 be?) The decision to not introduce 0-

based counting was taken to avoid diffusing the focus from the lesson's primary objectives.

www.manaraa.com

 90

implementing, in order, the (a) concrete, (b) intermediate abstract, and (c) complex

abstract solutions. When done, students will have had enough experience to feel

comfortable using for-loops to solve problems of this type

The purpose of this approach – of all the approaches really – is two-fold: (1) to

scaffold learning, breaking the lesson into smaller more comprehensible steps; and (2) to

focus on language acquisition through repetition in multiple contexts. Studying the

particulars of the Concrete method – (a) the four drawRect() calls corresponding to the

number of repetitions; (b) the parameters for drawing the largest square reflected in the

initial values of variables in Abstract 1 or the y-intercept values of Abstract 2; and (c) the

intervals between the parameter values echoed in the step or slope values – focuses

students' attention on the critical semantic details of the for-loops. These are the elements

common to all three methods which students carry forward as they transform one

solution into another.

As alluded to earlier, the idea of revealing connections between different semantic

or syntactic structures has parallels in Algebra instruction. For example, geometric

proofs of the algebraic factor formulas for difference of squares (a
2
 - b

2
) and addition of

squares (a
2
 + b

2
) not only reveal the connections these concepts have to both disciplines –

like two sides of the same coin – but provide students the additional tools to derive the

formulas, rather than having to rely only upon memorization. The passage below cites

the importance of connections in mathematics, but the same holds true for deeper

understanding of the way programming languages work:

When students can connect mathematical ideas, their understanding is deeper and

more lasting. They can see mathematical connections to the rich interplay among

mathematical concepts… By emphasizing mathematical connections, teachers can

help student build a disposition to use connections in solving mathematical

www.manaraa.com

 91

problems, rather than see mathematics as a set of disconnected, isolated concepts

and skills. (National Council of Teachers of Mathematics, 2000)

Psychologically, connections facilitate retrieval of information from long-term memory.

When trying to recall a specific memory, related concepts are also activated and

remembered (Woolfolk, 2004). The more connections attached to a concept, all things

being equal, the easier it will be to remember it when needed.

* * * * * * * * * *

A progression of alternate coding choices from concrete to abstract can also help

to clarify the use of counter variables used in algebraic expressions in other domains,

such as when they are used (a) to access array/list elements, or (b) to iterate between the

two parameters of the String substring(int beginIndex, int endIndex) method. The four

methods below incrementally demonstrate behavioral characteristics of beginIndex.

Incremental methods to clarify the meaning of beginIndex.

// concrete for guided discovery of how the 1st parameter works
public static void method1A() {

 String s1 = "abcdefghijklm";

 System.out.println(s1.substring(0));

 System.out.println(s1.substring(2));

 System.out.println(s1.substring(4));

 System.out.println(s1.substring(6));

 System.out.println(s1.substring(8));

}

// abstract 1
public static void method1B() {

 String s1 = "abcdefghijklm";

 int start = 0;

 for (int i = 1; i <= 5; i++) {

 System.out.println(s1.substring(start));

 start = start + 2;

 }

}

// abstract 2
public static void method1C() {

 String s1 = "abcdefghijklm";

 for (int i = 1; i <= 5; i++) {

 int start = 2 * i - 2;

www.manaraa.com

 92

 System.out.println(s1.substring(start));

 }

}

// general abstract method using all possible values for beginIndex

// Note: output is the empty string when i == s1.length()
public static void method2() {

 String s1 = "abcdefghijklm";

 for (int i = 0; i <= s1.length(); i++) {

 System.out.println(s1.substring(i));

 }

}

The three methods below likewise demonstrate behavioral characteristics of endIndex.

Incremental methods to clarify the meaning of endIndex.

// concrete for guided discovery how

// the 2nd parameter operates in combination with the 1st
public static void method2A() {

 String s1 = "abcdefghijklm";

 System.out.println(s1.substring(2,3));

 System.out.println(s1.substring(2,4));

 System.out.println(s1.substring(2,5));

 System.out.println(s1.substring(2,6));

 System.out.println(s1.substring(2,7));

 System.out.println(s1.substring(2,8));

}

// concrete for extracting individual characters
public static void method2B() {

 String s1 = "abcdefghijklm";

 System.out.println(s1.substring(0,1));

 System.out.println(s1.substring(1,2));

 System.out.println(s1.substring(2,3));

 System.out.println(s1.substring(3,4));

 System.out.println(s1.substring(4,5));

 System.out.println(s1.substring(5,6));

}

// abstract for extracting individual characters
public static void method2C() {

 String s1 = "abcdefghijklm";

 for (int i = 0; i < s1.length(); i++) {

 String ch = s1.substring(i,i+1);

 System.out.println(ch);

 }

}

www.manaraa.com

 93

Combining the concrete-abstract and parameter-transformation strategies is

especially useful in a unit where one is introducing common methods of a class's API.

The String-1 unit at Codingbat.com contains a nicely designed progression of problems,

starting with those that require the use of concatenation, substring() and length() for their

solutions. Below is an example of how one would scaffold instruction for the second

problem, makeAbba().

public static String makeAbba(String a, String b) {

 return "-";

}

public static String makeAbba() {

 String a = "Hi";

 String b = "Bye";

 return "HiByeByeHi";

}

public static void main(String[] args) {

 System.out.println(makeAbba("Hi","Bye"));

 System.out.println(makeAbba("Yo","Alice"));

 System.out.println(makeAbba("What","Up"));

 System.out.println(makeAbba());

 System.out.println(makeAbba2());

 System.out.println(makeAbba3());

}

The unsolved problem appears at top, followed by its parameter-transformed version,

where the parameter variables have been promoted to the local space and initialized with

the arguments from the first call of the method in main(). The return statement contains

the correct output for those values (Codingbat's description for each problem provides

these). Two intermediate steps, one concrete and the other abstract, are constructed

(below): the return statement is first subdivided into constituents corresponding to the

parameter values, and the variables corresponding to those parts are then substituted in.

www.manaraa.com

 94

public static String makeAbba2() {

 String a = "Hi";

 String b = "Bye";

 return "Hi" + "Bye" + "Bye" + "Hi";

}

public static String makeAbba3() {

 String a = "Hi";

 String b = "Bye";

 return a + b + b + a;

}

Running the parameter-transformed program locally in an IDE (e.g. in Eclipse) and

seeing the correct output demonstrates the equivalencies of the concrete and abstract

versions. The abstract method body – minus the promoted initialized local parameter

variables - is then pasted into the unsolved problem at top, and finally into the web page.

public static String makeAbba(String a, String b) {

 return a + b + b + a;

}

Below is similarly scaffolded code for the problem makeOutWord().

public static String makeOutWord(String out, String word) {

 return "-";

}

public static String makeOutWord() {

 String out = "<<>>";

 String word = "Yay";

 return "<<Yay>>";

}

public static void main(String[] args) {

 System.out.println(makeOutWord("<<>>", "Yay"));

 System.out.println(makeOutWord("<<>>", "WooHoo"));

 System.out.println(makeOutWord("[[]]", "word"));

 System.out.println(makeOutWord());

 System.out.println(makeOutWord2());

 System.out.println(makeOutWord3());

 System.out.println(makeOutWord4());

 System.out.println(makeOutWord5());

 System.out.println(makeOutWord6());

 System.out.println(makeOutWord7());

}

www.manaraa.com

 95

public static String makeOutWord2() {

 String out = "<<>>";

 String word = "Yay";

 return "<<" + "Yay" + ">>";

}

public static String makeOutWord3() {

 String out = "<<>>";

 String word = "Yay";

 return "<<" + word + ">>";

}

public static String makeOutWord4() {

 String out = "<<>>";

 String open = "<<";

 String close = ">>";

 String word = "Yay";

 return "<<" + word + ">>";

}

public static String makeOutWord5() {

 String out = "<<>>";

 String open = "<<";

 String close = ">>";

 String word = "Yay";

 return open + word + close;

}

public static String makeOutWord6() {

 String out = "<<>>";

 String open = "<<>>".substring(0,2);

 String close = "<<>>".substring(2);

 String word = "Yay";

 return open + word + close;

}

public static String makeOutWord7() {

 String out = "<<>>";

 String open = out.substring(0,2);

 String close = out.substring(2);

 String word = "Yay";

 return open + word + close;

}

Note the discipline of postponing the substitution of an abstract variable for a String

literal until all steps in a progression of intermediate concrete statements have been

exhausted. For example, the local variables open and close are initialized with string

www.manaraa.com

 96

literals, postponing the two substring() extractions of the variable out. This scaffolding

can be reinforced with direct instruction articulating general methodologies or principles

for solving problems of this kind, e.g. the requirement that one must be able to trace back

everything in a return statement's abstract expression(s) to the input parameters.

Recall Deb Roy's chief finding that all three of his son's caregivers

"subconsciously restructured [their] language to meet him at the birth of a word and bring

him gently into more complex language". This is the type of language instruction that is

required of teachers who want to progressively move as many programming-capable

students as possible into literacy. Feedback from students of mine who tend to struggle

with new programming constructs is that instruction like the kind described above helps

to lessen, if not completely dispel, the utter confusion or mental blocks they initially

experience as they begin to see ways to utilize previously learned, familiar concepts as

they work towards understanding the new material.

www.manaraa.com

 97

Subsection 5. Semantics: Ongoing Exposure

A general strategy for ongoing exposure to the PL – originally articulated by

Corder for L2 acquisition – is modeled after Mounty et al.'s second theme of providing a

continuous print-rich English-cultural home presence, exemplified by the ritual of Deaf

parents reading the same bedtime stories over and over to their children, and taking the

time to point out, explain and reinforce new vocabulary with fingerspelling. This

strategy is also informed by the finding that the use of words in multiple contexts

(wordscapes) predicted word acquisition in a toddler.

The predominant university-level instructional model for CS1 – and the secondary

pedagogic model that echoes it – is for students to be given general instruction and

assigned problem sets. Answers are posted after the homework is turned it. They may

optionally choose to attend study sessions led by T.A.'s for going over these exercises,

where the type of re-teaching that is common in secondary classrooms might occur.

In the two secondary courses that I teach, equivalent to CS0 and CS1, students

receive instruction (direct or otherwise) on a particular PL feature. Then, depending

upon the exercise, they are given guidelines or a framework, or told that certain past

problems can help them solve problem sets utilizing the new feature. As students work in

class, the teacher circulates, giving hints to students who may be at a roadblock. When

most students appear to have solved a problem, the instructor shows one or more optimal

solutions. Following a back-and-forth discussion, students implement (not copy) these

solutions. Students work through each problem in the set in this same way.

The ongoing exposure strategy occurs when all of the problems have been

completed. Students are again asked to study the optimal solutions, and when ready,

www.manaraa.com

 98

implement from scratch all exercises in the problem set in a workspace where they

cannot refer to their previous work. Students may refer to written notes, but not

programming code. As such, this is not an exam, but rather a production strategy for

repetition and meaningful interaction, giving students more practice, and fostering an

environment in which optimal language semantics can be internalized. The teacher is

always available to give hints so that students who are stuck can get beyond roadblocks.

This last interaction, where a teacher gives individual help to a student who is

motivated to progress, is reminiscent of Deb Roy's scaffolding feedback loop. As an

example, one student who had still not internalized the difference between array

indices/positions and values/elements, could not fathom why he could not get his

program to output the median value in a list of 15 sorted integers. He had actually coded

the program to output the index (length/2) rather than the value

(list[length/2]), but because the number 7 was one of the elements, he kept

mistaking the output for the wrong element value. Feedback by the teacher came at the

moment when the student was primed to finally understand the distinction.
16

The Ongoing Exposure strategy is admittedly time-intensive, but as students

progress through the introductory course and into the second year, time becomes less of

an issue because their programming skills become more automatic. This strategy is often

tacked onto the tail end of instructional strategies described earlier, allowing students to

reacquaint themselves with each problem, perhaps glean new insights, and more firmly

secure its solution as a paradigm in their toolkits. For example, after students have

completed the for-loops transformations unit, where they have solved each problem in the

16

 Alternately, the problem might have been avoided altogether had the list been instead of a type other than

integer, such as a list of Strings; confusion of the value with the index would then simply not have

occurred.

www.manaraa.com

 99

set 3 different ways, they are then asked to solve each problem again from scratch in all 3

ways in a workspace where they have no access to their programming code.

www.manaraa.com

 100

Subsection 6. Summary

The instructional strategies discussed in this section all employ ideas from general

teaching theory. No concept or problem-solving piece is taken for granted. As much as

possible of a lesson's instruction is broken down into "baby" steps, consistent with

Vygotsky's zone of proximal development (ZPD) and scaffolding notions. Revisiting

concepts in contexts where they are used with increasing levels of sophistication utilizes

principles from Bruner's Spiral Curriculum. The difference between the pedagogies

discussed here and those typically used in CS programming instruction is that scaffolding

and revisiting is not limited to program logic and mathematics, but extended to features

of the PL used to mediate the logic and mathematics.

The near universal pedagogic model for CS instruction is taken from the playbook

used in the mathematics classroom: instruction followed by practice. In contrast,

language learning pedagogies provide students with an environment where

(a) comprehensible input is repeated in multiple contexts, and (b) meaningful interaction

and production are crucial pieces of instruction. In a language model, following

instruction there are two or more rounds of practice in which students are asked to use

concepts and features in slightly different ways and from different angles. The altered

contexts for language features allow students to differentiate the features from the whole,

helping them clarify their meaning, and their basic and nuanced uses.

One chief impact of this kind of instruction is that the pace in which one traverses

the traditional introductory CS curriculum will be significantly slower and extend over a

longer time frame. This is not a novel idea:

www.manaraa.com

 101

Ideally, people would learn to program the same way “normal” people learn to

play instruments: Slowly over several years, with lots of practice. However, this is

not practical at the university level.

The foreign language model is closer to being practical. At Grand Valley, students

study a foreign language for four semesters before beginning a serious study of

literature and composition in that language. In theory, I think a similar model for

programming would be much more effective. (Kurmas, 2011)

 Secondary CS courses are generally one-semester electives, a learning model that

guarantees that students will never become proficient at this core CS skill. Rather, a

minimum two-year sequence of programming courses is necessary: a foundational pre-

AP programming course and the APCS-A course. Both courses need to employ

pedagogies addressing how students learn both programming concepts and programming

language features. The extension of time is the necessary condition for ensuring deeper

and more lasting comprehension, and an increase in the number of successful students.

 The "programming-centric" criticism of programming courses that has been

voiced over the last decade, though nonsensical at its heart, does have one valid point:

such courses generally have a very narrow focus, and domains of application are just as

narrow and uninteresting. A student whose experience is limited to just the content of the

APCS-A course may have gained substantial skill and proficiency in programming, but

would be at a near total loss to articulate how those fundamental, but still very basic,

skills could be put to use in any real-world or practical terms. If such students end up

unable to connect what they have learned with the far-reaching role that computer

programming plays in nearly every aspect of 21
st
-century life, how can one expect

students with no exposure to this subject to enroll in courses that teach what appears to be

an esoteric skill? Part 2 of this thesis is a project report describing a foundational pre-AP

programming course that challenges this mold.

www.manaraa.com

 102

PART 2

A CONTEXTUALIZED

PRE-AP COMPUTER PROGRAMMING CURRICULUM:

MODELS AND SIMULATIONS FOR EXPLORING

REAL-WORLD CROSS-CURRICULAR TOPICS

www.manaraa.com

 103

CHAPTER 1.

CONTEXTUALIZATION IN CS EDUCATION

Section 1. Introduction

Despite the pervasiveness of the applications of Computer Science throughout

daily life, most high school students – and most of the population at large – have no idea

as to the content of CS courses. And why should they? Rather than being integrated into

the curriculum starting in the early grades, the breadth of the applications of CS are either

completely ignored by all K-12 core subject areas or limited to what is already known in

the popular culture at large. Unfortunately, this also characterizes what the

overwhelming majority of secondary CS instructors know. When the curriculum

described in this project report was first developed, it was thought, naively, that a CS

curricular sequence whose organizing principle is multidisciplinary – one that applies CS

concepts to the Sciences, Humanities and Arts, subject areas with which students are

already familiar – might in and of itself augment enrollments and retention. This did not

turn out to be the case. Interest without self-efficacy, as discussed earlier (Part 1, Chapter

2) is insufficient. This does not mean, however, that interest is negotiable or a lesser

factor. Students must be able to forge a personal connection to the subject matter to

sustain long-term interest and engagement. Personal interest in the subject matter fuels

intrinsic motivation, which psychological research has long linked causally to

engagement, creativity and high-quality conceptual learning:

Intrinsic motivation enhances a learner’s conceptual understanding of what they

are trying to learn. When high, intrinsic motivation promotes flexibility in one’s

way of thinking, active information processing, concentration and effective use of

learning strategies, and learning in a way that is conceptual rather than rote. When

intrinsically motivated, learners concentrate process information deeply, and think

about and integrate information in a flexible, conceptual, and less rigid way,

www.manaraa.com

 104

rather than engage in rote learning such as memorizing and simply trying to

reproduce an other-prescribed right answer. (Reeve, 2014)

Furthermore, the decision to frame course content within the context of CS as an

applied science – to expand the constricted popular view of CS beyond gaming, social

media and the like in order to broaden non-trivial interest in the field – is certainly a

better way to academically represent and teach the subject as it actually operates in the

21
st
-century. The alternative is the predominant model, one that fails to recognize that it

is in effect a truncated, incomplete curriculum that propagates a distorted view of the

field's wide range of applications.

The introductory- and intermediate-level interdisciplinary units described in this

project showcase the reach, importance and utility of CS applications to other academic

fields, including Astronomy, Geography, Molecular Modeling and Political Science

(units in Music and Bioinformatics are taught in advanced courses, and units in

Environmental Science and Holocaust Studies are ideas for future development). The

curriculum goes by the name Computer Science as if the Rest of the World Existed

(CPRWE).

At the start of a typical multi-week unit, students use an existing complex and

engaging application – such as Planetarium software or a Molecule Viewer program – to

explore a specific problem. They then begin to build a scaled down, simplified version of

the program which they use to investigate that same problem when completed. The

intent is that students be able to envision, with little imagination, their ability to construct

– in theory – the larger real-world applications after which their smaller programs were

modeled. In the process of writing the smaller scale program, students focus on one or

more core algorithms key to its intended function. This approach (a) gives students

www.manaraa.com

 105

experience in constructing complete programs that can be used to examine actual

phenomena; (b) shows them how the programming concepts they've learned can be put

into practice to solve a lengthy, open-ended problem; and (c) provides a purposeful

context for utilizing academic knowledge learned in other coursework.

At the end of each unit, students study a theater piece, film and/or screenplay –

often biographical – where some aspect of the unit problem plays out in the lives of the

characters. This last piece anchors the problem to an historical and social context and

offers students a humanistic vantage point to consider the ramifications of the unit

problem and their program's historical – or potential – societal impact: to wit, the

knowledge gains a human, and perhaps personal, purpose.

In addition to creating new areas of interest for students, an argument can be

made that this kind of approach might also counter and rehabilitate the prevailing

constrictive and generally uninformed image of CS, which may be feeding systemic,

bureaucratic and attitudinal obstacles to inclusion and implementation of CS education at

the secondary level. Layperson stakeholders may not ever learn to appreciate the subject

matter on anything but a surface level, but they can certainly comprehend how

extensively 21
st
-century society relies upon the applications of this field.

It needs to be acknowledged that, within the time constraints of a course lasting a

single college semester or high school year, the tension between the two goals of

enabling self-efficacy and generating interest involves trade-offs. Ten units is a tight fit

for a year-long course if one wants to teach each unit in any degree of depth, particularly

if one wants to delve into the kind of details software engineers encounter regarding

www.manaraa.com

 106

unintended side-effects caused by one's particular choice of competing programming

models or implementations.

Were the course taught in a foreign language-like context, there would be a

minimum time allotment of two years for achieving substantial language goals. In my

experience, this kind of time period is required for students to develop substantial

programming competence, the traditional high-fliers included. Although the most

talented students may appear like wizards compared to the majority of their grade-level

classmates, by no means do they have a solid conceptual foundation, and like their

fellows, require a second year of the kind of subject matter content and practice found in

a rigorous APCS-A course, such as one that uses the textbook Building Java Programs

by Reges & Stepp (BJP). With these considerations in mind, the current incarnation of

my freshman CS0 course teaches Units 1-6 (Dynamic Art and Codingbat) in the first

semester. The second semester comprises the first 4 chapters of BJP – the textbook for

the APCS-A course – and concludes with Unit 7, The Right to Vote (scoring optical

ballots using multiple recursion), and Unit 10, Molecular Modeling and DNA. Units 8

and 9 can be taught in subsequent years.

Note that because the IDE used in this course is Processing – a graphics library

built on top of Java, with the Processing language itself being a simplified form of Java

that fully conforms to Java syntax, even allowing the intermingling of Java and

Processing statements – there is a seamless transition to Java when students begin to

work in Codingbat and the first part of the APCS-A curriculum. As such, the disruption

that would occur when switching languages – with the unrealistic expectation that

programming skills will automatically transfer – is avoided.

www.manaraa.com

 107

The initial stages of this effort were acknowledged by a SIGCSE Special Projects

grant in the August 2011 cycle. An interim report was presented in a 75-minute "special

session" at the SIGCSE 2012 national conference in Raleigh, NC, and described in a short

publication (Portnoff, 2012). The full course outline was approved by UCOP (University

of California Office of the President) as a college-preparatory "A-G" "g"-elective in

December 2013.

www.manaraa.com

 108

Section 2. Contextualization Efforts in CS Education

CS educators have long suggested that science education not be fenced off from

the social sciences:

… insuring science and technology are considered in their social context…may

be the most important change that can be made in science teaching for all people,

both male and female. (Rosser, 1990)

In her article In Search of Gender Free Paradigms for Computer Science

Education, [CS professor Dianne Martin discusses] "a premise for the gender bias

in computer science: the existing educational paradigm that separates studies of

science, math, and computer science from studies of the humanities, starting in

the secondary schools." She speculates that an integrated approach to computer

science would attract more women students, and that we should pay "greater

attention to values, human issues, and social impact as well as to the

mathematical and theoretical foundations of computer science." (Margolis, Fisher,

& Miller, 1999/2000)

The acceptance and integration of social issues into computing curricula is still a

work in progress twenty years after it was first incorporated into the ACM

Computing Curricula. ...most institutions include the societal impact of ICT in

their programs. However, topics often concentrate on computer history, codes of

ethics and intellectual property, while neglecting broader issues of societal

impact. (Goldweber, et al., 2011)

What's more, the idea of a multidisciplinary approach to CS education is not a novel one:

…most computer science programs in their early years are narrowly focused on

programming and the more technical aspects of the field, with applications and

multidisciplinary projects deferred to the very end. This gives beginning students

the false message that computer science is "only programming, programming,

programming," abstracted away from real world contexts (Margolis, Fisher, &

Miller, 1999/2000).

Interdisciplinary learning "fosters two related goals: exposure to multiple bodies

of knowledge that are not connected through a traditional course of study; and the ability

to integrate those bodies of knowledge in pursuit of a shared understanding or answers to

a larger question" (Holley, 2009). Benefits of interdisciplinary learning are well-

documented. Students engaged in "interdisciplinary programs are more likely to acquire

www.manaraa.com

 109

integrated perspectives and solution-focused strategies, rather than content-specific

knowledge derived from a single discipline" (Ivanitskaya, Clark, Montgomery, &

Primeau, 2002). Research showing that "the brain is a parallel processor that makes

meaning by patterning" supports the view that "sophisticated levels of learning" are not

as well learned when "studying subjects separately" (Klein, 2005). Compared to

disciplinary courses, "interdisciplinary curricula tend to make more explicit connections

between the subject matter and the student’s prior experiences through active,

constructivist, student-centered pedagogies." Researchers report that interdisciplinary

curricula enhance critical-thinking and problem-solving skills (Holley, 2009). Calling

something "interdisciplinary", however, is no magic bullet. Researchers caution that

"outcomes stem as much from the way in which the courses are taught as they do from

their interdisciplinary nature" (Newell, 1994).

Over the last decade, postsecondary CS educators have begun to offer CS courses

across diverse disciplines in increasing numbers. Leading the pack is bioinformatics with

approximately 150 major/minor programs in North America. "Modern experimental

techniques, including automated DNA sequencing, gene expression microarrays, and X-

ray crystallography are producing molecular data at a rate that has made traditional data

analysis methods impractical. …Computational modeling and prediction methods, such

as comparative modeling of protein structure, are now reaching a level of sophistication

that allows some experimentation to take place entirely within a computational

framework" (Doom, Raymer, Krane, & Garcia, 2003).

A UMass Lowell course sequence called Performamatics employs Scratch to

write music related programs and tackle issues like synchronization and harmony

www.manaraa.com

 110

(Ruthmann, Heines, Greher, Laidler, & Saulters, 2010). The Computing and Music

Committee of SIGCSE was established in May 2010 to explore ways "to enhance

computer science education through music applications" (Beck, Burg, Heines, &

Manaris, 2011). The North American Computational Linguistics Olympiad (NACLO) is

a high school competition that highlights study and career opportunities "that involve

linguistics, computation, and human language technologies" (Radev & Levin, 2009). An

Interdisciplinary CS Research Projects program at KCC-CUNY motivates students by

emphasizing the "interplay between fundamental principles arising from mathematical

theory, and computational complications involved in applying these principles to real

world problems" (Balsim & Feder, 2008). Georgia Tech offers a course on

computational journalism and Columbia University has a dual Master of Science

program in CS and Journalism. The discipline applies "algorithms and principles from

computer science and the social sciences to gather, evaluate, organize and present news

and information" (Pulimood, Shaw, & Lounsberry, 2011). In 2007, the Electrical and

Computer Engineering department at UNCC offered a course entitled Design of

Intelligent Spacecraft that integrated concepts from the history of astronomy and space

exploration, mathematics, celestial mechanics and navigation, engineering and computer

science (Willis & Conrad, 2008). This course went further than most in attempting to

anchor the topic within an historical context. The Computational Science minor

program at Wittenberg University, in place since 2004, involves students majoring in

biology, biochemistry-molecular biology, chemistry, economics, physics, geology,

mathematics and computer science, as well as "in several non-traditional disciplines

including art, psychology and international studies" (Caristi, Sloan, Barr, & Stahlberg,

www.manaraa.com

 111

2011). Missouri University of Science and Technology has an introductory CS course for

engineering students in which they solve problems in aerospace engineering and civil

engineering, such as calculating rocket trajectories of lunar craft from Cape Canaveral to

the moon (Hurson & Sedigh, 2010). The Penn State Worthington / Scranton IST and

physics departments designed a project utilizing the Satellite Tool Kit to model

astrodynamics simulations for various orbital scenarios, and plan high school projects in

applied physics, the physical sciences and engineering (Smarkusky, et al., 2011).

Florida Tech offers a survey course targeting non-major freshmen and sophomores that

covers digital media, bioinformatics, business, molecular modeling, engineering,

geography, physics, sociology, AI and cryptography. A parallel course for majors is an

upper-class elective that explores problems in sociology, geography, marketing, finance,

law and biology. The Harvard University Dept. of Anthropology and the MIT CS and AI

Lab looked for archaeological mounds using remote sensing data acquired from time

series of multispectral satellite images. They adapted an old technology – using satellite

radar to collect surface elevation data in order to generate topographical maps of rocky

planetary surfaces – and applied it to an archaeological problem (Menze & Ur, 2012). A

working group (in which I was a co-author) at ITiCSE 2012 detailed the outlines for 14

lessons in a wide range of applications addressing social concerns (e.g. humanitarian

relief, environmental issues), including Red Cross disaster relief, species population

simulations, the use of nuclear power, and water pollution (Goldweber, et al., 2013).

As these many examples show, the applications of CS now encompass a hugely

diverse range of academic and scientific fields. That secondary CS educators have failed

to incorporate such connections in their curricula in any serious or comprehensive way is

www.manaraa.com

 112

more than a wasted opportunity. Consider teaching the fingerings of a musical

instrument using only practice exercises, with no attempt to play real music

compositions, even simplified ones. The metaphor is exact. Including the reach of CS

across the academic spectrum is not a gimmick to recruit students: this material is a vital

and essential – but missing – part of the secondary CS curriculum. By paying lip service

to the idea, but ignoring it in practice, secondary CS educators are acquiescing in a

truncated, incomplete curriculum.

Importantly, this approach also has the potential to alter the image secondary CS

projects. The popular conception of CS pigeonholes the field as one whose principal

applications are limited to Gaming, Social Media, the Internet and Mobile Devices.

Student IDEs like Alice and Scratch do initially engage students, and the Scratch

Performamatics program at the University of Massachusetts appears to have sustained

that interest. On the other hand, curricula that focus on tasks such as Alice skaters

performing pirouettes around holes in the ice trivialize CS and narrow the lens through

which students might find and connect with something of lasting import and value in the

field. One might concede that story-telling might have a valid place in K-8 curricula.

However, by the time students reach high school, my experience is that most students –

girls included – quickly tire of make-believe scenarios, and using these IDEs with such

content does nothing to slow attrition from the CS program. Juxtapose such curricula

against those that create simulations of the solar system to calculate and view the

trajectory of a space mission to Mars, or ones that construct biologically important

molecules to elucidate disease or drug mechanisms. The latter acquaint students with

powerful examples of Applied CS and provide more desirable engagement experiences

www.manaraa.com

 113

because: (a) they have purposeful and multiple real-world connections; (b) the problems

presented are complex, but not insurmountable; and (c) they utilize and extend academic

knowledge that students already possess.

www.manaraa.com

 114

Section 3. Potential Impact on Institutional Change

CSTA's 2010 report Running on Empty describes nationwide systemic issues that

promote a climate that devalues K-12 CS education (Wilson, Sudol, Stephenson, &

Stehlik, 2010). Such factors include: (a) the miscategorization of CS as a CTE course

and nothing more, and/or confusing it with Computer Literacy; (b) a lack of

comprehensive and dedicated CS state standards; (c) a widespread failure to view CS as

part of the "core" curriculum or to count CS coursework towards math or science

graduation credit requirements, and (d) a lack of support or interest on the part of school

staff (Carter D. , 2012).

The report's Executive Summary begins: "Computer science and the technologies

it enables now lie at the heart of our economy, our daily lives, and scientific enterprise."

Yet the single reference and sole example of the "broad interdisciplinary utility of

computers and algorithmic problem solving" is "programming a telephone answering

machine." That one would be hard-pressed in 2010 to imagine a less inspiring example
17

is indicative of the meager thought given this aspect of CS by those leading the

discussions on secondary educational policy. Although NSF has funded postsecondary

grants that incorporate multidisciplinary approaches into CS curricula, conversations by

policy makers and national teacher organizations have been devoid of meaningful or

considered efforts to encourage or implement curricula that include the interdisciplinary

reach of CS across the secondary academic curriculum.

Carefully choosing the most engaging examples of interdisciplinary applications

to showcase in an integrated CS curriculum has the potential to attract interest from

17

 The example is even dated, superseded by voice mail. The phrasing appears to have been lifted verbatim

from CSTA's October 2003 A Model Curriculum for K-12 Computer Science (p 12).

www.manaraa.com

 115

secondary educational administrators. For example, if a more accurate awareness of the

ever-increasing dependency of biological, medical and genetic research on CS

algorithmic approaches can be conveyed to administrators responsible for science

education, the systemic dynamics that have kept CS as an academic underdog might be

positively altered.

Moreover, an outcome showing increased retention rates would have broad

implications for an alternate model curriculum, one in which cross-disciplinary units are

the vehicles through which CS concepts are learned and applied. Although much effort

and hope are going into the new APCS Principles course, what has not been addressed is

a pipeline that leads to it. Most AP courses assume a supporting foundation of core

subject areas whose coursework students have been studying for years. Presently, the

only course that might conceivably fulfill this supporting role is Computer Literacy (CL),

which typically covers the MS Office suite or the equivalent. Recently, however, some

postsecondary instructors have developed CL modules that "cover topics of interest to a

particular major or group of majors" (Carter L. , 2007). Middle or high school CL classes

where students learn to navigate applications in the STEM fields and the Arts can

similarly be re-imagined. Because CL is often a requirement, courses with

multidisciplinary content could naturally channel students into CS courses.

www.manaraa.com

 116

Section 4. Core Computing Concepts and Computational Competencies

Although CSTA has proposed standards, there are four problems with its

objectives and outlines. First, it is a top-down approach, which – lacking any research to

support it – consists simply of educated guesses. Second, the standards are topics without

contexts; it is inadequate to stipulate Iteration, without specifying the intended task (e.g.

search a list; perform a repetitive action with changing parameters; circular queue;

implementing recursion iteratively). Third, algorithms are dealt with on only the most

rudimentary level. Fourth, even the most recent version of CSTA's 63-page K-12

Computer Science Standards (2011) is a document that is long on generalities and short

on specifics: there is not a single code fragment to serve as illustration. Compare to

NCTM's 402-page Principles and Standards for School Mathematics (2003). The latter

is rich in illustrations and specifics for how to teach concepts from each strand; includes

insightful counterexamples; examines concepts on many levels; and makes explicit

connections between strands.

A curriculum whose units include complex central problems, given a large

enough number and range of modules, might be a contributing source for deciding what

might be the specific computing concepts and skills we want to teach at the high school

level. Consider, for example, the modulus operator, which surprisingly is mentioned in

none of the three levels of CSTA's Model K-12 Curriculum. In contrast, three of the

CPRWE CS units described here utilize a circular buffer and explicitly implement the

iterative wrap around using the modulus operator.

One might divide programming standards into 4 conceptual levels: (a) Coding:

Programming Language Concepts; (b) Structure: Organization, Modularization, Method

www.manaraa.com

 117

Hierarchy; (c) Abstraction: Object-Oriented Model; and (d) Algorithms: Object-

Oriented Problem Solving Strategies.

Open-ended problems explored in depth lend themselves to unforeseen, but

fascinating, sub-problems that crop up en route as one crafts the larger solution. The

sub-problems encountered in the CPRWE units are more often on the levels of

Abstraction and Algorithms, and turn out to be the more powerful and engaging ideas in

each unit. Studying these sub-problems can give rise to algorithmic standards CS

educators may never have previously considered.

For example, in the Around the World geography unit, when an east- or west-

bound traveler detects a sunrise, using a point-sector intersection model, it increments a

count variable. At the end of any number of days, when the two have completed one full

circumnavigation, the east-bound traveler should experience one more day than a

stationary observer, and the west-bound traveler should experience one fewer. However,

when both traveler and sunset are moving, a bug arises where the east-bound traveler

misses a sunrise, and the west-bound traveler counts one of the sunrises twice. The

solution involves slightly narrowing the sector for the west-bound traveler and expanding

it for the one traveling east, but the mathematics for doing so present the most profound

concept in the unit. The CS principle in this sub-problem reveals the limitations and

problems that arise when discrete models are used to approximate idealized continuous

systems or processes. Other similarly complex CS and software engineering concepts are

detailed in the unit descriptions.

There is a consistent focus in these units on deciding among the best of competing

solutions to a complex problem – whether at the levels of coding, abstraction, algorithms

www.manaraa.com

 118

or design – giving students the kind of experience in problem-solving typical of project

based learning, but at a deep and complex level. Programming and PL concepts are re-

encountered and reinforced as students implement these sub-problem solutions using

specific combinations of control structures and logic. Critically, students learn that

software logic in one part of a program can cause side-effects or have implications for

design decisions down the line, both positive and negative.

www.manaraa.com

 119

Section 5. Broadening Participation

An argument can be made that finding ways to increase enrollments of all

students in the APCS-A course may positively impact gender diversity as well.

College Board data for 2015 (College Board, 2015) shows a small difference in

APCS scores by gender, a pattern that had been consistent since 2004 – when Java

supplanted C++ as the PL of instruction – but that has narrowed over the last decade
18

.

Mean 2015 scores were 3.11 for males and 2.94 for females, a difference of about 6%.

Research into the cause of what might be a related performance gender gap in math – and

its disappearance – found that "the likeliest explanation for the dramatic improvement in

math performance by U.S. females lies in …girls in general taking more mathematics and

science courses during high school due, in part, to changes in requirements for

graduation and admission to colleges…" (Kane & Mertz, 2012). The performance

problem was the visible symptom, but the underlying problem appears to have been one

of a disparity in participation numbers. Note that participation numbers rose "in part"

because of a policy change enacted nationwide. No curricular or pedagogical cause was

given credit, although their influence cannot be ruled out.

Bearing this in mind, a reasonable hypothesis regarding the small CS performance

gap measured by the APCS exam is that it, like the math gap, has been driven by the low

female participation numbers. This hypothesis is supported by a shrinking gender

performance gap, falling from a high of 16% in 2004 to 5.6% in 2015 (Figure 12). The

R-square value for the correlation between the two variables using either quadratic or

cubic polynomial regression is 0.688.

18

 The gap was 11-16% from 2004-2007, 8-10% from 2008-2012, 5.6-7% from 2013-2015.

www.manaraa.com

 120

Figure 12. CS Gender Performance Gap, 2004-2015

College Board data also show a positive correlation between the total number of

students who take a particular STEM subject exam and the participation rate of female

students in that AP course (Figure 13). The graph suggests that low total enrollment

numbers may contribute to the gender disparities seen in U.S. secondary CS participation

rates. Note that this is not a novel idea. In a study looking at the effect of culture and

environment on women's participation in CS, Blum et al. said as much, stating their

"belief that the reasons for under-representation [of women] in CS are very much the

same as the reasons for the huge decline in interest in the field generally." (Blum L. ,

Frieze, Hazzan, & Dias, 2006)

www.manaraa.com

 121

Figure 13. %Female vs. Number of STEM Test Takers, 2015

The corollary would predict that an increase in overall enrollment numbers in CS

classes would narrow the gender gap. There was, in fact, an improvement from 2004 to

2015, as female participation grew from 16.2% to 21.9% as overall enrollments rose from

13,872 in 2004 to 46,344 in 2015 (Figure 14, the quadratic regression differing little in

position and significance from the linear regression). The improvement is extremely

modest considering that enrollments more than tripled, but the trend is still significant.

There are – at least – two interpretations: (a) Low total enrollments are a minor cause of

CS gender disparities, or (b) much higher total participation rates will be required to in

order to see substantial increases in female enrollments.

www.manaraa.com

 122

Figure 14. %Female vs. Total Number of APCS Test Takers, 2004-2015

Historically, the AP Physics courses have also experienced nearly as severe

gender disparities, but among them, those courses with substantially higher total

enrollments have had better female participation rates, an argument that favors the second

interpretation above. Through 2014, the Physics courses consisted of two calculus-based

"C" courses and one algebra-trigonometry-based "B" course. In 2015, the latter was

discontinued and split into two courses called Physics 1 and Physics 2.

Physics C: Electricity & Magnetism and Physics C: Newtonian Mechanics had

total enrollments of 20,110 and 48,207 with female participation rates of 23.2% and

27.1%, respectively. Despite total enrollments that were lower (17,758), the new

algebra-trigonometry-based Physics 2 (Fluid Mechanics & Thermal Physics, Electricity

& Magnetism, Optics and Nuclear Physics) had a higher female participation rate of

31.2%, somewhat lower than its Physics B predecessor. However, its sibling Physics 1

(Rotational Mechanics, Intro to Electricity, Waves & Sound), with a whopping total

www.manaraa.com

 123

enrollment of 162,796, had a female participation rate of 40.1%, 9 points higher. This is

also 5½ points higher than its Physics B predecessor's rate of 34.5% in the years 2011-

2014 (constant during those 4 years) with half the enrollments of Physics 1: 71,395 in

2011 and rising to 87,495 in 2014. These statistics do seem to support the hypothesis that

very high numbers are needed for female participation rates to begin approaching parity

in this subject area. At this point in time, one can only speculate what differences might

make Physics and CS so much more resistant to achieving gender parity than

Environmental Science, Statistics and Chemistry.

In terms of gender performance gaps, the two Physics C courses and Physics 2

had small gaps (mean scores) in the range 6-11% favoring males. Physics 1, however,

had a much greater gender performance gap: 22%, a rise of 7 points from Physics B's

previous 4-year gender performance gap average of 15%. This behavior is the opposite

of that observed in CS and would argue that the correlation in Figure 12 is not causative.

If higher enrollments do have a causative role in CS gender disparities in

participation or performance, how to bring about increases in total CS enrollments, and

female enrollments in particular, is very much an unknown. Some CS educators have

suggested that curricula centered on story-telling using IDEs like Alice or Scratch might

attract girls to computing (Kelleher, Pausch, & Kiesler, 2007). However, Blum et al.

warned:

The implications are that women do not need handholding or a "female friendly"

curriculum in order for them to enter and be successful in CS or related fields, nor

is there need to change the field to suit women. To the contrary, curricular

changes, for example, based on presumed gender differences can be misguided,

particularly if they do not provide the skills and depth needed to succeed and lead

in the field. Such changes will only serve to reinforce, even perpetuate,

stereotypes and promote further marginalization. (Blum L. , Frieze, Hazzan, &

Dias, 2006)

www.manaraa.com

 124

Despite reports of 29% of high school CS instructors using Alice as a first language in

introductory courses (Carter D. , 2012), this has not translated into greater gender

diversity or an increase in female participation rates for the APCS-A exam.

Although it is widely acknowledged that such IDEs initially generate a high level

of engagement, it has also not been demonstrated that this interest can be sustained. One

likely explanation is that the fault lies with the curricula used in conjunction with Scratch

or Alice. If the contexts for class instruction are game-related or make-believe, the

message teachers send is that CS has no real world applications of any consequence or

value beyond entertainment or play. One study has shown that gaming curricula actually

discouraged non-majors' interest in CS (Rankin, Gooch, & Gooch, 2008). It has also

been reported that games "have been tried and have failed to have an effect on steeply

declining female enrollment" (Stross, 2008).

It is also true that these curricula employ the same default educational paradigm

criticized by Margolis et al, i.e. "programming, programming, programming, abstracted

away from real world contexts." There's actually a very good reason that this is the case.

Introductory courses focus on imparting the basic programming infrastructure that will

allow students to write methods, both procedurally and using an OO approach.

Applications, particularly those that would hope to model "real world contexts", require a

software engineering approach that involves organizing methods hierarchically and

within classes and modules, something that has pedagogically been postponed until later.

This sequence builds programming skills from the bottom up. Changing this to a top-

down paradigm, in which both sets of skills could be taught simultaneously, is a tough act

to pull off. You can't exactly read Madame Bovary if you're still learning elementary

www.manaraa.com

 125

French vocabulary and grammar. Even intermediate-level news web sites like News in

Slow French (newsinslowfrench.com) require a full year and a half of high school French.

Nevertheless, one might term the basics-first approach self-referential, a

curriculum that has a strict focus on programming topics and that ignores CS's role as an

applied or engineering science with applications in numerous domains outside of CS. A

self-referential approach has limited appeal beyond the traditional demographic. Thus,

despite being contextualized in a virtual, self-contained 2-D or 3-D world, the core

content and pedagogic approach of such curricula differ little from that of curricula that

they've replaced. This is not the first time this criticism has been articulated:

Typical computing programs of study today have changed very little over the

years and decades while the computing field has evolved and transformed itself

many times over… Are we doing our students an injustice? Have we cheated

them by not keeping pace with the field? …We claim that it is time to think

beyond the bounds of our own learning and to consider new ways of learning

computing. (Impagliazzo & McGettrick, 2007)

www.manaraa.com

 126

Section 6. Principles for Implementation

An alternative to the self-referential curricular paradigm is one where units

consist of cross-curricular central problems which students solve over a period of several

weeks using whatever CS tools are needed. The structure of this type of curriculum

resembles IMP (Interactive Mathematics Program), whose development was funded by

NSF in the 1990s. IMP is a 4-year program of problem-based mathematics that replaces

the traditional Algebra I-Geometry-Algebra II-Trigonometry/Pre-calculus sequence.

IMP units are generally structured around a complex central problem. Although

each unit has a specific mathematical focus, other topics are brought in as needed

to solve the central problem, rather than narrowly restricting the mathematical

content. Ideas that are developed in one unit are usually revisited and deepened in

one or more later units. (Fendel, Resek, Alper, & Fraser, 2008)

For example (although the real-world application is a stretch), the complex

problem posited by IMP’s High Dive unit (Year 3) has students calculate at what point a

circus performer on a turning Ferris wheel must dive so as to land in a tub of water on a

moving cart. To solve the problem, students extend right-triangle trigonometric functions

to circular functions; learn about the graphs of the sine and cosine functions; and study

polar coordinates, inverse trigonometric functions, the Pythagorean identity, and the

physics of falling objects.

Extending this approach to an introductory CS course is not feasible in the short-

term. Even small cross-curricular problems in CS require a working knowledge of all

basic programming constructs. In this sense, CS is like learning a foreign language: one

needs to acquire a basic foundation before one is able to read even simple literature. The

multi-week cross-curricular units in the curriculum described in this project report appear

in the second half of the course, following students' acquisition of reading/writing

www.manaraa.com

 127

proficiencies in using conditionals, iteration, variables, variable types, basic data

structures, classes/objects and functions. Getting students up to this minimum level

quickly needs to include a short, but sustained, period of practice with units comprised of

sequences of progressively more complex problems, à la websites like Codingbat.com,

and can be done in approximately one semester and change.

Moreover, the goals of this cross-curricular course are different from IMP. The

IMP thematic units are carefully sequenced over a three-year period to build algebra,

geometry, trigonometry and pre-calculus proficiencies. The sequencing may differ from

the traditional sequence of math strands, but is critical nonetheless.

 In contrast, this CS curriculum has two goals. The first is to expand student

repertoires for how they can use programming constructs to solve a variety of tasks, to

facilitate self-efficacy. The second is to provide purpose, to counter the traditional

paradigm of disembodied knowledge, to spur interest. This is done by giving students

opportunities to solve engaging, motivational problems set in intriguing real-world

contexts designed to answer the question: "How can I use this knowledge?" The

sequencing of the CS modules is important, but not particularly critical, because students

will have acquired basic programming competencies by the time they encounter the

material.

Moreover, to attempt to design a CS curriculum that parallels IMP would be

premature because of the near total ignorance of how students learn in this subject area.

The first part of this thesis claims that language-acquisition-based pedagogies play a

critical role in the first year of learning fundamental programming concepts. However,

the fact that even simple programming problems are open-ended, with many possible

www.manaraa.com

 128

solutions, points to pedagogies that should be developed and employed to facilitate the

higher goal of programming literacy. Programming literacy – writing hierarchically

organized, concise, clear, maintainable and elegant programs – is a craft with similarities

to creative writing. We know that the only way to become a better reader is to read, and

that reading helps one learn to become a better writer (Krashen S. , 2004). Reading

programs would seem to be a non-starter due to the difficulty and patience needed to

decipher them. Rather, effective pedagogies for programming literacy will probably

follow Corder's ideas that language learning happens spontaneously when conditions in

the learner's environment encourage it.

The guidelines for acceptance of a Computer Science course that meets

University of California A-G requirements is that it both "teaches students to express

algorithms in a standard language" and "requires students to complete substantial

programming projects", both of which contribute to the rigor of this curriculum. The

Applied CS units for this study are built using the following guidelines:

1. The units employ a software engineering approach. CS's natural relationship to

other disciplines is Software Engineering, a field which uses programming and CS

concepts, along with expert knowledge of specific target topics, to model and solve

societal problems and needs. Topic areas will largely lie outside the field of CS

proper.

2. Central problems are multi-part and multi-week. Each unit lasts several weeks and

revolves around solving a central problem in the target topic area. A software

solution evolves in an incremental way, utilizing whatever CS concepts and control

www.manaraa.com

 129

structures are required. Various programming and algorithmic strategies are

attempted at each step in a problem’s solution, and students weigh the advantages and

disadvantages.

3. Programs are modeled after real applications. One way instructors can foster

connections is by having students create small scale versions of engaging and

complex real world applications. Students should be able to envision logical

extensions of their projects to the already existing and more complex programs from

which they were drawn.

4. Interdisciplinary knowledge provides context. To solve a unit’s central problem,

students need to become familiar with relevant concepts in geometry, trigonometry,

biology, physics and so forth. This reflects typical conditions that software engineers

encounter in their day-to-day work, i.e. programmers must not only be proficient in

their own field, but must have knowledge of the specific non-CS systems they are

modeling in order to write accurate, robust and logically organized programs.

Pedagogically, this gives students multiple contexts for recalling and integrating what

they learn.

5. Unit problems are considered within a social and/or historical context. This

provides students an explanation why solving the central problem is important in the

first place. These so-called back-stories may utilize Literature, Theatre, History,

Social Studies, Economics, Film and/or Art in making those connections.

www.manaraa.com

 130

In the Astronomy unit, for example, a short program written in Processing simulates

a heliocentric (Copernican) model of the solar system and allows students to view the

complete cycle of Venus's phases as seen from Earth. A companion program that

simulates the geocentric (Ptolemaic) epicycle model will demonstrate the

impossibility of observing both a completely dark Venus and a fully lit Venus. When

students subsequently read Bertolt Brecht's play Life of Galileo, they learn that it was

this single celestial observation – made possible by the newly invented telescope –

that was a pivotal point in the ongoing erosion of papal power, already weakened by

the Reformation. Although Galileo himself was put under house arrest for the

remainder of his life, his discoveries loosened the Church's capacity to impede the

pace of science during the Renaissance.

 On the pedagogic level, this unit taken in its entirety extends and clarifies

students' understanding of events 400 years old. It does so through the use of student-

written software that can clarify the true nature of a celestial phenomenon, one whose

logical implications had huge historic, social and political ramifications. Because of

its many facets, the unit contains multiple points at which students can make

engaging connections.

 If placing problems in real-world contexts answers the question "How can

I use this knowledge?", providing historical and social contexts allows students to ask

"What is the human/societal impact?" At this point, students step back, gain

perspective and reflect on the big picture to observe how their work can be used and

misused. For example, IBM, in pursuit of its bottom line, conducted business as

usual by supplying pre-war Nazi Germany punch cards for the Hollerith machines it

www.manaraa.com

 131

used to automate its data collection methods in pursuit of its racial laws. The Galileo

and Holocaust units bring up powerful ethical questions for scientists and engineers

that dwarf such standard topics as intellectual property. On the constructive side, this

part of each unit can also be a time for students to ask the question: "What do I want

to create with this knowledge?" and begin to envision themselves as technology

creators.

6. Units should make credible connections to academic fields and topics students have

already studied. This allows them to extend prior knowledge, and facilitates quicker

engagement with the material. Detailed descriptions of the course's cross-curricular

units appear in Chapter 2. Below are outlines for potential units, not yet fully

developed.

a) Evolution and Social Reaction (Evolution, Genetics, Bioinformatics).

Use of genomic databases and software tools to align DNA and protein sequences

from related species to build phylogenetic (evolutionary) trees. Study and modeling

of bioinformatics algorithms: LCS algorithm, global alignment, local alignment,

scoring matrices, clustering – all used by the free software MEGA (Molecular

Evolutionary Genetics Analysis).

www.manaraa.com

 132

Play: Inherit the Wind, examining the fundamentalist backlash against the Theory of

Evolution.

Students use the National Center for Biotechnology website to download DNA or

protein sequences from different species and import these into MEGA, which

calculates evolutionary distance tables to construct inferred phylogenetic trees. The

student implementation examines just one algorithm utilized in this process:

calculating the degree of sequence homology between molecules using the LCS

(Longest Common Subsequence) algorithm. Using Excel to implement a visual

model of the 2-D tables, students can observe an emerging subsequence build from

tail to head as the program retraces its steps. The clustering algorithm used to

construct the evolutionary tree can be studied in a subsequent course.

b) The pure and simple truth is rarely pure and never simple (Environmental

Science)

• Predator-Prey Population Simulation Software, and the unintended consequences of

human activity, such as overfishing. (Leinweber)

www.manaraa.com

 133

• Earthquake Epicenter Algorithms using Triangulation. (Science Courseware.org,

CSU). Study of the 3/11/2011 Japanese Earthquake and Tsunami and its aftermath.

c) On the Road (Geometry / Geography)

GPS and Routing Programs

• A GPS program based upon triangulation of satellite data, equations for calculating

longitude and latitude on a sphere, and a geographic database.

• A routing program using Dijkstra's shortest path algorithm (like Google Maps).

d) Music Visualization (Music Animation Machine)

Synchronization of the orchestral instruments of musical works – such as Beethoven's

7
th

 Symphony or Vivaldi's Four Seasons (Winter) – with colored geometric shapes

moving across the screen that represent notes

(pitch, duration, volume). Study of the life and

work of Walter/Wendy Carlos, a 1960s pioneer

in electronic music, and an examination of the

nature of prejudice against sexual minorities,

particularly transgender people.

CS concepts: Proportional reasoning and sequence/series concepts are used to

determine the frequencies of musical notes and for calculating vertical positions;

parsing of string input; synchronization of midi synthesizer output with visuals;

discontinuities between system timer and midi timer.

www.manaraa.com

 134

e) IBM's Strategic Contribution to Facilitate the Holocaust (Holocaust Studies)

Before the invention of computers,

punch card technology was used to

solve database-related problems. The

sorting and tabulating algorithms used

to process these cards were ancestors of

methods used in present-day databases.

IBM and its German subsidiary Dehomag were active participants in the processing

of population data used to identify, transport and exterminate the Disabled, Jews,

Gypsies, gay men and Communists throughout Europe from 1933 through 1945.

Excerpts from the book: IBM and the Holocaust. (Black, 2001)

Film/Book: Sarah's Key. Deportation of a young Parisian girl and her family during

the Vel d'Hiv roundup of July, 1942.

Film: A Film Unfinished (footage from the Warsaw Ghetto)

Film/Play: Copenhagen (ethical conflict between physicists Niels Bohr and Werner

Heisenberg)

Websites: United States Holocaust Memorial Museum; USC Shoah Foundation

Institute: IWitness; Yad Vashem, the Holocaust History Museum

Students build a simulation of a Hollerith machine and implement sorting and

tabulating algorithms to order punch cards coding for census data.

www.manaraa.com

 135

Candidate Unit Topics that were considered, but not fleshed out, included:

1. DNA Fragment Assembly – used in the Human Genome Project. (DNA Learning

Center)

2. SNP (Single Nucleotide Polymorphism) Mapping of Genes (Sadée) (Altshuler, et

al., 2000)

3. Classical Population Genetics using Blood Types.

www.manaraa.com

 136

CHAPTER 2.

THE COURSE OUTLINE FOR CPRWE: COMPUTER PROGRAMMING

AS IF THE REST OF THE WORLD EXISTED

Section 1. Introduction

CPRWE (Computer Programming as if the Rest of the World Existed), is a

year-long introductory programming course intended to give students (1) a rigorous

overview of and basic literacy in the uses of a structured programming language, using

the Java-based language Processing; and (2) familiarity with algorithmic problem-

solving. Within the context of programs of mid-level complexity and size, and cross-

curricular fields of application (science, art, humanities), students learn the uses of

variables, Boolean expressions, and iterative and conditional control structures. They

learn to encapsulate code within methods, pass input (arguments) via parameters, and

calculate return values. Students learn to think of programs as interactions of objects

having attributes and methods that they describe in classes. They learn software

engineering principles for top-down design, resulting in hierarchically organized

programs for optimal maintenance, modification and extendibility. They examine criteria

for deciding which of competing code styles and algorithms to implement. Equally

important, they learn the possibilities for non-trivial applications of programming to

study and solve diverse problems across the STEM, Humanities and Arts curriculum. To

write accurate programs, students learn and use cross-curricular concepts from such core

areas as math (e.g. algebra, trigonometry), chemistry (electro-negativity, covalent and

hydrogen bonds) and biology (DNA structure and genetics). In order to give purpose and

context to the programming task, students study a film or play that situates the target

www.manaraa.com

 137

problem within an historical / societal context. For example, in the Astronomy unit

(Galileo's Revolution), students build (a) a Copernican simulation of the solar system to

understand such observational phenomena as the phases of Venus, Mars in retrograde,

and the infrequency of solar eclipses; and (b) a Ptolemaic simulation (using epicycles) to

prove that such a model cannot account for all the phases of Venus. They then study

Bertolt Brecht's play Life of Galileo, and consider the repercussions of the discovery of

the phases of Venus (a) in accelerating the pace of both the scientific Renaissance and the

religious Reformation, and (b) in weakening the Church and eventually the monarchies of

Europe.

The course is divided into three sections:

a) Basic Programming Skills and Introductory Projects: Graphics basics, Primitive

Methods / Arguments, Coordinate Plane Manipulations, Processing Mouse and

Keystroke Events, Animation. setup() Initialization Code; draw() Animation

Code, User-Defined void Methods / Blocks / Indentation, Variables, System

Variables, Classes / Objects, Arrays, Iteration.

b) Building Programming Skills: Methods that return values, Primitive Types (int,

boolean), Method Parameters, Hierarchy / Nested Conditional Statements

c) Intermediate Projects: Software Engineering Principles, Multiple Structural

Recursion, Inheritance, Polymorphism.

The first section is intended as a "whole language" approach where students learn

to recognize and use basic programming components to build four dynamic art programs

sequenced in increasing levels of sophistication. The second section uses CodingBat to

help students gain proficiency in programming skills and recognize programming issues

www.manaraa.com

 138

that involve Boolean logic, strings, arrays and iteration. The third section is comprised of

four multi-week projects where students build scaled down, but functional, applications

of real-life software programs, and use them to examine or solve specific problems in

government, geography, astronomy and molecular biology.

www.manaraa.com

 139

Section 2. Piet Mondrian Painting

(PART I: INTRODUCTORY PROJECTS)

Essential Question

How does one design a computer program?

Supporting Questions

Where does a computer program begin execution?

What is a method?

How does a primitive method differ from a user-defined

method?

Does the order of arguments in a method call matter?

What is hierarchical organization?

What are the advantages to organizing one's code?

How do syntax errors differ from logic errors?

How do methods that set modes operate?

How does one fix bugs in a program?

How does the RGB color system – and transparency – work?

Description

The unit introduces students to the Processing programming environment and

familiarizes them with its inverted Cartesian coordinate plane (origin at the upper left

corner). They learn basic drawing and mode methods for rendering regular and irregular

shapes. They learn the programming concept of hierarchical organization by defining

methods with meaningful names and grouping primitive functions into the method

bodies. They learn to call these methods sequentially in the program's entrance point

method setup(). They learn indentation conventions to organize lines of code for

legibility. They learn to add comments to their program to clarify intent. They learn that

the settings of mode methods persist beyond the methods in which they are used – until

they are next changed. They learn simple debugging techniques for locating the source

of logical errors. They learn about programming language syntax, such as matching

parentheses and curly braces, and the order of method arguments; they learn to debug

syntax errors. Students learn the RGB color system and transparency.

www.manaraa.com

 140

Key Assignments

 Following an introduction to the Processing programming environment and basic

drawing methods, students are given an image of the Piet Mondrian painting and shown

how to determine coordinates of rectangle vertices and line endpoints using the system

tool Paint.

Students then write a hierarchically organized program that renders a full-scale and

close approximation of the image. In the course of completing the task, students:

1. Create parameter-less user-defined methods made up of primitive methods.

2. Call primitive methods using the correct coordinates and widths/heights.

3. Call user-defined methods in setup();

4. Use primitive mode methods at the beginning of each user-defined method to avoid

persistence side-effects.

5. Employ simple debugging strategies to locate and correct syntax and logic errors.

Teaching Strategies

Instructor uses direct whole-class instruction to demonstrate the Processing

programming environment and its inverted Cartesian coordinate plane (origin in the

upper left corner) as students practice at their workstations and instructor and advanced

students circulate to help students having problems. Instructor similarly guides students

through the use of basic drawing methods, and accessing/reading online documentation.

Using guided discovery, students learn by examining program output: (a) how colors are

defined using RGB values; and (b) what the various attributes do that mode methods set.

www.manaraa.com

 141

Instructor clarifies how primitive methods work by using counterexamples, e.g. a

different ordering of primitive methods or method arguments (signatures), to show

incorrect or unintended program output.

Instructor helps students individually and via direct whole class instruction to

debug syntax and logic errors in their program. Syntax errors in this assignment are

limited to orphaned opening or closing curly brackets or parentheses; and using a

different ordering or number of method arguments than those specified in the

documentation. Instructor teaches (a) students to recognize these specific errors, (b)

procedures for avoiding these errors, and (c) simple strategies for locating these errors

when they occur (commenting out lines, use of auto-indent feature). The most common

logical error in this assignment is calling a mode method in one part of the program and

not resetting the attribute in a subsequently called method. Teacher shows students that

routinely calling mode methods at the beginning of user-defined methods, though

seemingly repetitive, avoids this kind of error. Instructor shows students the use of print

statements and comments for debugging logic errors.

www.manaraa.com

 142

Section 3. Ricocheting Comets

Essential Question

How does one program the simulation of movement?

Supporting Questions

How can the draw() method be used to simulate

movement?
What is difference between using the background()

statement in setup() vs. draw()?

How are variables in programming similar to and different

from variables in Algebra?

How and where do you declare, initialize, use and update

variable values?

What is an assignment statement, and what are the various forms it can take?

What is a system variable? [width, height]?

When in the execution of a program do system variables acquire meaningful values?

How can a conditional statement detect when an object reaches a specific location?

What's the relationship between a dividend being evenly divisible by a divisor and the

MOD function?

Why use parentheses in conditional expressions if there is no difference in expression

evaluation, i.e. if order of operator precedence yields the same result?

How do you use a variable to set the speed or direction of an object?

What does the random() method do; in what kind of situations would you want to use it?

How does a class allow you to create multiple objects of a given type?

What are instance variables?

What is a class constructor?

What's the difference between a class and an object?

How does a class allow you to alter attributes of objects so that they look and behave

differently?

Description

This unit introduces students to programming strategies that simulate movement.

Students learn to combine the use of drawing methods, variables and conditional

statements to move a circular object across the screen and make it ricochet off the edges.

Students learn the modulus function and some of its uses in conditional statements.

They learn the advantages to using variables instead of hard-coded values. Students learn

to combine simple conditions into complex conditional expressions using the logical

AND && and OR || operators. They learn to use parentheses inside of complex

www.manaraa.com

 143

conditional expressions in order to make the intent of their code clear and to avoid

ambiguity. They learn how to use the random() method to dynamically change the color

of objects. Students learn to define classes and use them to instantiate multiple objects

of that class.

Key Assignments

 The instructor guides students through the construction of a small program in

which a circular object moves horizontally, reversing direction when it reaches the left

and right edges of the window. Students then:

1. Write a program in which a circular object moves vertically, bouncing off of the top

and bottom edges.

2. Write a program in which a circular object moves diagonally and ricochets off each of

the four edges.

3. Modify #2 so that the circular object simulates realistic ricocheting behavior, i.e.

bounces when its outer edge touches the boundary, rather than its center.

4. Calculate algebraic expressions for the slopes of the diagonal segments; and calculate

the slope-intercept form of the equations for the lines lying on those diagonal

segments.

In the course of completing these tasks, students learn to create different variables, each

of which accomplishes a single task. For example, they must create separate variables for

horizontal and vertical movement (position and increment); they must create a radius

variable for modeling an object's outer edge.

www.manaraa.com

 144

Instructor introduces students to the random() method, and shows them how it can be

used to change the color of an object. Students then:

5. Modify program #3 to change the color of the circular object whenever it bounces off

of an edge.

Instructor shows students the syntax for defining a class. Instructor shows how to

write a constructor for initializing an object's attributes, and how to transfer the code

developed previously into class methods with meaningful names. Instructor shows

students how to instantiate an object of the new class, and how to call the object's

methods in setup() and draw(). Students then:

6. Add 15 objects to the program, each having different starting directions and speeds.

Finally, instructor shows students how to use a combination of transparency values

and drawing methods to give the illusion of a fading trail to a moving object. Students

then:

7. Modify their programs to give the illusion of fading trails to their moving objects.

www.manaraa.com

 145

8. Students solve a series of increasingly complex problems using the 200-circle matrix

program (above), modifying only the conditional statement to produce the correct output

of correctly numbered red circles. For example, the conditional statement that produces

the output shown above is:

if (i % 3 == 0) {

drawRedCircle(i);

}

Teaching Strategies

Instructor uses direct whole-class instruction, and circulates to help students.

Students learn by guided discovery, observing the runtime output of counterexamples.

Two cases detailed below show the use of these strategies.

1. When first coding the conditional statement to detect when the object reaches

the window's right edge, after initializing the program with a size(800,600)

statement, students generally write: if (x == 800). When we change either the

starting x position or the increment so that x will leapfrog over 800, students modify this

expression to if (x > 800). Instructor then demonstrates the system variable

width, and how it takes the value of the first argument to the size() method.

Instructor then directs students to change the first size() argument from 800 to 700.

Students observe that the object goes past the right edge, but eventually reappears in

reverse direction. Instructor asks students to modify the program so that the object will

ricochet at the right edge no matter what the width of the window is. Although several

students will change the conditional expression to if (x > width), a common error

is for students to simply replace 800 with 700. Eventually, with enough prodding,

www.manaraa.com

 146

students make the correct change and come to understand the power of variables to make

a program behave properly with varied input.

2. When teaching how the random() method operates, students are presented

with an alternate way of coding the part of their program that changes the color of their

objects once they ricochet. The original code is:

this.clr = color(random(256), random(256), random(256));

The new code is:

color newColor = random(256);

this.clr = color (newColor, newColor, newColor);

Without running the program, the question is put to the class whether the new code will

have output equivalent to the original. After discussion, everyone tests the code and sees

the different output, now limited to grayscale colors, rather than the full palette. Each

student is asked to write a paragraph explaining why the new code results in different

output. Students are then asked to modify the new code, all the while maintaining use of

the newColor variable, and make it work (spoiler: use 3 variables). It is through these

series of experiments that students learn to appreciate not just how the random() method

works, but to recognize that misunderstanding of an API method can lead to logic errors

because the programmer may use it incorrectly.

When teaching students how to reverse an object's direction, students are

prompted to come up with several code fragments for reversing the sign of a number, for

example:

n = -n;

n = n * -1;

n *= -1;

n = n – (2 * n); // which simplifies to the first statement

www.manaraa.com

 147

Counterexamples are also used in direct whole class instruction when introducing logical

AND and OR expressions. Venn diagrams and number lines are used to graphically

illustrate the difference between AND and OR, and to teach that AND corresponds to the

SET concept of INTERSECTION, and OR corresponds to the SET concept of UNION.

Instructor distributes the Excel worksheet

(at right) that only allows students to change the

value in cell B2 (the divisor value). Through

experimentation, students study the patterns of

output when doing integer division (quotient) and

modulus operations given dividend and divisor as

inputs, and deduce that a modulus output of zero

indicates that a dividend is evenly divisible by a divisor.

In direct whole class instruction, example practice problems using the 200-circle

matrix program are demonstrated to get students started on the task. Below is the output

showing the difference between && (intersection) and || (union). Students also recognize

that the && expression is equivalent to i % 12 == 0 and can be used to reveal the lowest

common denominator.

i % 4 == 0 && i % 6 == 0

(intersection)

i % 4 == 0 || i % 6 == 0 (union)

www.manaraa.com

 148

Section 4. Rotating McClure Painting

Essential Question

How is a single method able to do different things?

Supporting Questions

What is iteration? Why use it?

How do for-loops allow you to do repetitive tasks or

calculations?

What are the advantages to using a list (array)?

How are members of a list different from variables of

the same type?

Can a Java list contain objects of more than one type?

What is the connection between iteration and lists?

What kinds of programming errors cause side-effects?

How can programmers avoid coding side-effects?

How do you determine the order that you list parameters when defining a method?

Does the order that you do transformations (translate, rotate) matter?

Is math always involved when writing graphics programs?

Description

Students analyze a geometric image of a hexagonal painting. They recognize that

the hexagon is composed of 3 identically shaped rhombuses (although component colors

vary), and hypothesize that the program can draw the entire image by coding for the

display of just one rhombus, then "rotating the drawing code" twice. Instructor gives

students a helper-program that will create the code for a Java array of Points as they click

on the 38 vertices of the 12 irregular polygons that make up each rhombus. Students

splice this array into the beginning of their program, tweak vertex values for accuracy,

and use the indexed points to write 12 methods for drawing the irregular polygons.

Student write the methods by bookending vertex() method calls – which use indexed

points as parameters – between beginShape() and endShape(CLOSE). Students then

encapsulate these 12 methods into a higher-level method called drawRhombus(), which

www.manaraa.com

 149

is placed in setup() [because the image does not (yet) move, there is no need to involve

the draw() method at this point].

Students learn to code for the transformation by using the sequence: translate() -

rotate(), which will translate the drawing plane's origin to the center of the figure, then

rotate the drawing plane 120º in either direction before drawing the second and third

rhombuses. Because Processing's rotate() method takes radians as input (rather than

degrees), students learn the definition of radian and the common equivalents for standard

angles (multiples of 30º and 45º). They are also shown the radians() method, that lets

them simply wrap it around the more familiar degrees measures.

Students must also write a method translatePoints() that will translate each

member of the Points array in the direction opposite to the translated origin in order to

keep the hexagon center in the middle of the window. Prior to attempting this task,

students gain a working knowledge of the initialization, condition, and increment parts

of the regular for-loop.

To paint the rhombuses with the correct colors, students analyze the image for

color patterns. They discern that there are 4 sets of 3 identically colored (red, green,

white, black) polygons in each rhombus (1-5-7, 2-8-11, 3-10-12, 4-6-9). Each rhombus,

however, colors the 4 sets differently. Student add four parameters to the

drawRhombus() method. They then consider two methods for solving the problem: (a)

leave the 12 polygon methods in number sequential order, and use 12 color-setting mode

calls, one preceding each polygon method, or (b) regroup the 12 polygon methods

according to their color set and precede each of the 4 groups with a color-setting mode

www.manaraa.com

 150

call. For further clarity, students create 4 local color variables for use as arguments in

the drawRhombus() method call.

Finally, students make the image dynamic by moving the 3 drawRhombus() calls

to draw(), and creating a global angle variable that is incremented at the end of draw().

This revisits the movement programming mechanism used in Ricocheting Comets, but

for angular, rather than lateral, movement.

Key Assignments

1. Using the helper-program, students place a functioning code fragment for the Points

array at the beginning of their McClure program.

2. Using the Points array's indexed point variables, students create 12 parameter-less

methods for drawing the 12 irregular polygons in a single representative rhombus,

and place these methods in a working higher-level user-defined method called

drawRhombus().

3. Students write a method called translatePoints() that recalculates the Points array

coordinates so that the center point's coordinates is at the origin (0, 0).

4. Students write code for the translation and rotation transformations that allow one

to draw the other two rhombuses with drawRhombus().

5. Students add 4 color parameters to drawRhombus() and modify the method body to

paint each rhombus with the correct colors.

6. Students declare, initialize, use (with an additional rotate() call) and update a

variable named angle that allows the image to rotate.

www.manaraa.com

 151

Teaching Strategies

Instructor uses modeling to help students understand the geometric

transformation the program uses to draw the 2
nd

 and 3
rd

 rhombuses. The model likens the

graphic drawing plane to a large sheet of paper, and the drawRhombus() method to a

stamp. If one imagines that the paper does not move, then one must rotate the stamp to

draw the 3 rhombuses. Implementing this would require the programmer to calculate a

complete set of vertex coordinates for each of the 2 additional rotated rhombuses.

Instead, the preferred method is to consider the drawRhombus() method as fixed, and to

simply rotate the sheet of paper beneath it before "stamping" it. Instructor also makes

an analogy to drawing a circle with a compass, using each of these procedures. Because

the point of rotation is the paper's origin (top-left), a translate method needs to reposition

the origin at the center of the hexagon prior to the rotation operation.

Using the 200-circle matrix program, Instructor uses guided discovery so that

students see the effect of changing the initialization, condition and increment parts of

the for-loop code that draws the red circles. In this way, students gain a working

knowledge of how these 3 parts work together to perform an iterative task.

Instructor uses guided discovery to help students figure out how to write the

translatePoints() method that will adjust the coordinates of the Points array so that the

center point moves to (0, 0), and the remaining 37 points are translated an identical

amount. Using a for-loop, students adjust point[0] and subtract its coordinates from the

successive 37 points. Output shows that only point[0] has been modified. Instructor

directs students to set the initialization part of the for-loop to 1 rather than 0. Students

observe that the output is correct for all but the center point. Instructor asks students to

www.manaraa.com

 152

figure out why these side-effects occur. Students finally discover that they need to save

off the original coordinates of point[0], then subtract these from all 38 points in the array.

Students are thus made aware of the phenomenon of unintended side-effects that stem

from altering a variable referred to during the performance of a task.

www.manaraa.com

 153

Section 5. Word Clouds

Essential Questions

What are the advantages to using classes in the organization of a program?

How does one isolate side-effects generated from transformation operations?

Supporting Questions

How is the pushMatrix()-popMatrix() combination similar in usage to the

beginShape()-endShape() pair encountered in unit 3?

How does the pushMatrix()-popMatrix() combination prevent side-effects?

How do you use the random() method to place a word object along a window edge?

What are the advantages to using a for-each loop over a regular for loop? Are the two

interchangeable?

How do you synchronize two or more events?

How do you write code to dynamically alternate between objects being in motion and

then at rest?

Description

This unit teaches students how to use write programs that draw text. Students

learn these new text methods, and are introduced to the for-each loop. They learn how to

isolate transformation operations needed to render each word from having side-effects on

subsequently drawn words by bookending commands between pushMatrix() and

popMatrix() calls. The Word Cloud program intertwines these new concepts with the

major programming concepts revisited from the first 3 units: variables, conditional

statements, Boolean expressions, arrays, classes, iteration and movement.

www.manaraa.com

 154

Students spend time finding out about and experimenting with word clouds. They

find lengthy pieces of text ranging from essays to state documents, and use them as input

to any number of Internet word cloud programs referred by the Instructor. The instructor

guides the class through the construction a simple program that shows how to create

fonts and use them to output text. These methodologies are then encapsulated in a

DynamicText class whose constructor takes a list of parameters for text, font, size,

position, color, rotational angle and alignment. Students create an array of DynamicText

objects, and output them using a for-each loop. Instructor demonstrates how to create a

color-compatible background using text and a for-loop. Students use this code as a

model to write a new program that will create a densely packed word cloud design using

the most frequently occurring words in a student-chosen text passage.

To add motion, the instructor gives students a helper "edges" program to discover

how to write code that will place each word at a random starting location on any of the

four window edges. With instructor guidance, students discover a linear equation model

for synchronizing the starting and ending times of all words from their initial to final

locations. Lastly, students modify the program so that it cycles and spends equal time

between two states: (a) text objects moving from random positions on the edges to their

final positions, and (b) text objects remaining at the final positions to allow time for

appreciation of the final static design.

Key Assignments

1. After whole class instruction, students build a sample program that can output text of

varying colors, size, font, rotational angle, alignment, and position.

www.manaraa.com

 155

2. Students build a program that outputs a static Word Cloud design.

3. Students modify their programs to output a dynamic Word Cloud where words appear

at random positions on the window's 4 edges, then drift for 3-4 seconds to their final

positions, where they come to rest for an equal period of time. Program cycles

"forever" between these two states.

4. Using the techniques they learned in #3, students revisit the McClure painting

program and modify it so that it will (a) alternate the direction of rotation, and (b)

change background colors every time it begins to rotate in the opposite direction.

Teaching Strategies

Using the helper-program Edges, students

examine two concepts: (a) randomly positioning (text)

objects at the four edges of a window; and (b)

mathematical variants for defining 4 random intervals,

and their resulting constraints on programming style

decisions.

Using whole class instruction, teacher guides students to discover what the x and

y coordinates have to be if an object is to appear at any random position on the left edge:

x = 0; y = random(0,height); Students sequester the code in a method called

leftEdge(), then write similar the method bodies for rightEdge(), topEdge() and

bottomEdge().

Instructor next guides students to discover 2 basic variants for defining 4 random

intervals of equal size:

www.manaraa.com

 156

float n = random(0,4);

if (n < 1) { leftEdge(); }

else if (n < 2) { rightEdge(); }

else if (n < 3) { topEdge(); }

else { bottomEdge(); }

float n = random(0,4);

if (0 <= n && n < 1) { leftEdge(); }

else if (1 <= n && n < 2) { rightEdge();}

else if (2 <= n && n < 3) { topEdge(); }

else { bottomEdge(); }

Students are asked to consider the two code fragments for simplicity and clarity.

They are then asked to swap lines, e.g. swap lines 2 and 3. Students discover that this has

no effect on output for the second code fragment. However, in the first code fragment,

no circles appear on the right edge, i.e. the rightEdge() method is never called. Students

are asked to explain the phenomenon, and instructor illustrates the concept using (a) the

number line, and (b) rearranging a sequence of filters/sieves with increasingly larger

holes that are catching balls of various diameters, and so on.

To help explain saving/restoring of the drawing plane's state by pushMatrix()-

popMatrix() – used by the program to allows text objects to rotate independently –

instructor uses a camera metaphor, e.g. taking a snapshot of the drawing surface before

any translation/rotation operations, performing the transformations, then restoring the

prior state using the snapshot.

To derive expressions that allow the text objects to move (diagonally in most

cases) from initial positions to final positions, instructor guides students to calculate a

slope/intercept equation for both horizontal and vertical components of the motion. In

this case, however, x and y are the dependent variables and percent completion of motion

is the independent variable, with slope equal to the difference between final and starting

coordinates, and the y-intercept equal to the starting coordinate. Instructor gives students

www.manaraa.com

 157

hints by asking what the x-coordinate would be at 0%, 100%, 50%, 25% (in that order)

and so on (Note: although we are calling the variable "percent" for ease of instructional

discussion, in a strict sense, it is in fact the fraction of movement traveled). Students are

thus guided to derive the equation for the x-coordinate (below). Once solved, students

are directed to derive the expression for the y-coordinate using the same methodology.

 float percent = this.timeCurrent / TOTAL_TIME;

 float xCurrent =

 (this.xEnd - this.xStart) * percent + this.xStart;

To make the objects rest for an equal amount of time, instructor directs students to keep

incrementing timeCurrent to twice the TOTAL_TIME before reverting back to zero.

Students observe that this causes each text object to travel twice as far, specifically 100%

beyond their final positions. The remedy is to simply cap percent at 100% for all values

above 100%:

float percent = this.timeCurrent / TOTAL_TIME;

if (percent > 1.0) {

percent = 1.0;

}

float xCurrent =

(this.xEnd - this.xStart) * percent + this.xStart;

www.manaraa.com

 158

Section 6. CodingBat: Boolean logic, Strings and Arrays

(PART II: BUILDING PROGRAMMING SKILLS)

Description

CodingBat is a free site of live coding problems to build coding skill in Java…

The coding problems give immediate feedback, so it's an opportunity to practice

and solidify understanding of the concepts. The problems could be used as

homework, or for self-study practice, or in a lab, or as live lecture examples. The

problems … have low overhead: short problem statements (like an exam) and

immediate feedback in the browser.

- Codingbat.com/about.html

… Implicit in this is a [central] CodingBat idea: don't add complexity by making a

problem which is realistic or has a motivating back-story. Practice problems do

not need to be realistic. Instead, you want the description to be short and clear,

and you want to have lots of problems so the student can work lots of repetitions

(like exercise at a gym), building skill and confidence.

- Codingbat.com/authoring.html

At this point, students have had limited practice with most foundational

programming concepts within a (hopefully) motivating dynamic art context. Although

this should have given students a general framework for how computer programming can

be applied, at this point, they need to begin to acquire basic programming competence.

The intent is that students will not be learning disembodied skills, but rather will be

learning to hone and expand their skill applying specific programming concepts they've

already encountered within meaningful contexts.

Students now spend 6-8 weeks solving problems in 4 CodingBat modules:

Logic-1, String-1, Array-1 and Array-2. Logic-1 covers Boolean variables, use of

conditional statements (IF-ELSE, IF-ELSIF-ELSE, etc.), nested IF-ELSE statements, and

common introductory logic problems. String-1 covers the use of the methods length,

substring, startsWith, endsWith, isEmpty, equals and equalsIgnoreCase, as well as

the logic of how to access string index positions from the start, end or middle of a string.

www.manaraa.com

 159

Array-1 covers simple problems in array creation, indexing and swapping of values.

Array-2 covers iteration through the members of the array, touching upon operations such

as: searching; determining aggregate values; locating specific subsequences; and

comparing adjacent member items.

The purpose of the module is to give students real programming competence

using basic programming control structures and concepts. Because there are both simple

and sophisticated ways of writing code to solve these problems, instructor requires that

students first use the simpler, clearer (and longer) coding styles until satisfied that

students understand the underlying logic and programming mechanisms. Instructor then

shows students how and why the more sophisticated (and shorter) coding styles are

equivalent.

Because solutions to CodingBat problems are rife throughout cyberspace, students

are only given credit when they pass 4 custom/teacher-written quizzes, one for each

module. These custom quizzes have the same format and style as all other CodingBat

problems, and are accessible from the teacher's individual CodingBat home page.

In addition, the solutions to some of the problems involve programming issues

that will arise in later projects, e.g. circular buffers (a clock). Because the CodingBat

website simply glosses over these issues, the unit devotes significant time to exploring

different ways of thinking about how one might model and program such systems, and

requires expository assignments where students must clearly define the problem and

explain how to code the solution.

www.manaraa.com

 160

Key Assignments

1. Logic-1 Module and Custom Test

2. String-1 Module and Custom Test

3. Array-1 Module and Custom Test

4. Array-2 Module and Custom Test

Teaching Strategies

Solving the problems in CodingBat is a major hurdle for all students. There are many

ways/styles to write code that will solve the problems, and the solutions provided in the

Warm-Up and Help sections of the website do not provide the necessary scaffolding

required for most high school freshmen. Therefore, the teacher uses direct instruction to

help students understand how to solve the problems in the Warm-Up section. Although

each problem involves some new aspect or issue, the problem below can be used to

illustrate the teaching strategies used:

The parameter weekday is true if it is a weekday, and the parameter vacation is

true if we are on vacation. We sleep in if it is not a weekday or we're on vacation.

Return true if we sleep in.

The instructor first demonstrates how to build a 2-D table that represents all 4 cases:

 vacation !vacation

weekday T F

!weekday T T

Instructor then shows several ways to code the solution:

public boolean sleepIn(boolean weekday, boolean vacation) {

return !weekday || vacation;

}

public boolean sleepIn(boolean weekday, boolean vacation) {

if (vacation) {

return true;

}

else {

return !weekday;

}

}

www.manaraa.com

 161

public boolean sleepIn(boolean weekday, boolean vacation) {

 if (vacation) {

 if (weekday) {

 return true;

 }

 else {

 return true;

 }

 }

 else {

 if (weekday) {

 return false;

 }

 else {

 return true;

 }

 }

}

For students who initially struggle, the last solution is longer, but simpler to understand

because each of the 4 possible combinations is represented. Once students see the code

working, the instructor can guide them to realize that the first if (vacation) statement can

be simplified because it always returns true, i.e. weekday is irrelevant to the return value.

i < 50 || i > 150 && i % 2 == 0

(i < 50 || i > 150) && i % 2 == 0

www.manaraa.com

 162

Some problems in CodingBat can involve complex Boolean expressions which combine

the && and || operators. The 200-circle matrix program can show how && has higher

precedence than ||. The expression

i < 50 || i > 150 && i % 2 == 0

yields the pattern above top, demonstrating that && binds tighter than ||, even though the

expression is evaluated from left-to-right. When one adds parentheses to force the || to be

evaluated first, as in

(i < 50 || i > 150) && i % 2 == 0

the pattern is as shown above bottom. The moral of the story is ALWAYS use

parentheses to clarify the intention of the programmer.

Sometimes CodingBat problems inadvertently present common programming issues.

The problem below is an example:

We have a loud talking parrot. The "hour" parameter is the current hour time in

the range 0..23. We are in trouble if the parrot is talking and the hour is before 7

or after 20. Return true if we are in trouble.

The Boolean expression for the time period between 8 pm and 7 am (non-inclusive),

although written exactly as stated in the problem, is not intuitive because it spans the 0/24

boundary in the circular buffer representation of a clock. Normally a time interval

between an earlier and later time is written using an AND expression, e.g.

6 <= hour && hour <= 12, analogous to how one would write a range using an

algebraic expression: 6 <= hour <= 12. However, for intervals that span the boundary,

the expression is nonsensical:

20 < hour && hour < 7

www.manaraa.com

 163

As illustration, the instructor uses Venn diagrams and the number line to demonstrate

how a number cannot simultaneously be in two disjoint sets. One solution is to view the

interval as the union of two intervals on either side of the boundary:

(20 < hour && hour < 24) || (0 <= hour && hour < 7)

However, because the range of times is limited to 0-23, there is no need for the conditions

in red. The expression simplifies to:

20 < hour || hour < 7

Because students will revisit such boundary problems in the cross-curricular units, they

are required to write clear, but short, answers to all 4 of the following questions (in

general, students who cannot do so do not yet have the abstraction abilities necessary to

succeed in a programming course).

1. What is the normal expression for a specific time period on a 24-hour clock?

(e.g. between 12 and 18)

2. What is the problem with a time period that spans the 0/24 boundary?

3. What is the full expression for a time period that includes both sides of the boundary?

Explain how you get this expression.

4. Why can you simplify this full expression by dropping the (0 <= hour) and

the (hour < 24)?

www.manaraa.com

 164

Section 7. Nested For-Loops, Regular Patterns, and T-Tables

Description

This is a short unit that introduces students to nested for-loops and a

methodology for solving specific kinds of problems where these loops are used. Thirteen

problems from the exercises section at the end of Chapter 2 in Building Java Programs

were adapted for this unit. The problems involve using nested for-loops to produce

regular patterns of lined text output. In order to solve the problems, students must use

inductive reasoning to determine linear expressions that describe all lines in the output,

using line number as the independent variable. Students proceed by creating a T-table

describing the number of different categories of characters/numbers for each line. They

then graph the categories against line number and determine the slope of the resulting

line. Plugging in the slope and any single point into the slope-intercept equation allows

one to calculate the y-intercept. One now has a slope-intercept expression for each

category. These are used in the conditional part of the inner for-loops, and at times for

the output character itself, if it's a number. Below is an example pattern, a T-table, and

the nested for-loops where the derived expressions are used.

*|||||

**||||

***|||

****||

*****|

www.manaraa.com

 165

line # * # |

1 1 5

2 2 4

3 3 3

4 4 2

5 5 1

6 6 0

Algebraic expressions line 6 - line

for (int line = 1; line <= 6; line++) { // outer loop

 // 1st inner loop prints asterisks

 for (int a = 0; a < line; a++) {

 out.printText("*");

 }

 // 2nd inner loop prints vertical bars

 for (int v = 0; v < 6 - line; v++) {

 out.printText ("|");

 }

 // after printing all the characters on the line,

 // go to the beginning of the next line

 out.printTextLine();

Key Assignments

13 Problems, including T-tables, graphs, Boolean expressions, and working code.

Teaching Strategies

Instructor uses whole-class direct instruction to go through the example described

in the outline.

Instructor also has students reverse the process, i.e. trace through the code for

several similar problems and show the output in both a T-table and console table for each

iteration and output statement. An example of such a reverse problem is shown below.

 for (int line = 1; line <= 5; line++) {

 for (int sp = 1; sp <= 5-line; sp++) {

 output.PrintText(" ");

 }

 for (int n = 1; n <= 2*line-1; n++) {

www.manaraa.com

 166

 output.PrintText(line);

 }

 output.PrintTextLine(); // Enter Key

 }

Line # spaces # Number Number

1

2

3

4

5

Expression 5-line 2*line-1 line

Line 1

Line 2

Line 3

Line 4

Line 5

www.manaraa.com

 167

Section 8. The Right to Vote

(PART III: INTERMEDIATE-LEVEL PROJECTS)

Essential Questions

How do you write a program to simulate an election, both the marking and counting of

thousands of ballots?

How is a program like this similar to software used to tally optical scan ballots?

Supporting Questions

Describe the flood fill algorithm?

Define recursion. What's the danger inherent in using recursion?

What is the difference between global and local variables?

How would one decide whether to use a global vs. a local variable?

Description

To give students background, they begin the unit by examining Palm Beach,

Florida's "butterfly ballot" from the Nov. 7, 2000 presidential election. Students watch

the film 2008 HBO film Recount about the electoral chaos in Florida which was resolved

on Dec. 12, 2000 by the U.S. Supreme Court decision that gave the election to George

Bush. Students also watch the 2004 HBO film Iron-Jawed Angels which tells the story of

the suffragist Alice Paul in the 8 years preceding the passage of the 19
th

 Amendment.

Students write an essay about the film in response to the prompt described in Key

Assignments.

www.manaraa.com

 168

At the start of the unit's programming section, students are instructed to figure out

a way to mark the ballot above so that the entire white space within a circle is blackened.

Students opt for what they know: using the ellipse() method to fill in the circle.

However, because the border around the circles is pixilated, the rendering either leaves

some pixels unmarked, or draws over gray pixels outside of the circle's boundary. At this

point, Instructor introduces the recursive Flood Fill algorithm. Students reorder the

recursive calls in the floodFill() method in a helper program that slows down the

sequential filling in of the pixels; this allows students to see that the direction in which

pixels are being drawn corresponds to the order of the recursive calls. Students use this

information to write the body to a method named markBallot() that completely fills in a

white circle for a single candidate. Students write a second method markBallotX()

method that instead draws an X centered on a random location in the white circle, and

consider what criteria should be used to determine the voter's intent, i.e. how many pixels

in the white circle need to change color.

Students implement an Election class that marks and counts ballots. The method

markBallots() creates thousands of ballots (Ballot class objects) and uses the (revisited)

random() method to set the parameters for the percentages of the ballots that will be

marked for each candidate. They will also use random() to mark a certain percentage of

the ballots in some invalid way, such as for more than one candidate, or for no clear

candidate choice.

Students then implement the tallyElection() method, which iterates through the

ballot utilizing a countBallot() method that determines which candidate the voter

selected. The countBallot() method in turn must employ a readBallot() method that

www.manaraa.com

 169

uses (revisited) nested for-loops to iterate through rectangular regions of the ballot

image's pixels. They consider three algorithms for dealing with invalid ballots when

implementing countBallot(): (a) Increment global variables for each candidate as marks

are encountered. When a ballot marked for two or more candidates is determined to be

invalid after it has already incremented their candidates' totals, it will be read a second

time to decrement and correct those same variables. (b) Examine a ballot first to

determine if it is valid. If so, read it a second time. (c) Read a ballot only once, but use

local variables in the countBallot() method to first collect counts for all candidates. If

the ballot is valid, use the local variable to increment the corresponding global variable.

Key Assignments

1. Students write an essay about the two films Recount and Iron-Jawed Angels, in

response to the prompt: The protagonists in both films used many strategies in their

efforts to reach their goals, both of which concerned voting rights. Describe key

strategies that each group used in order to try to attain their goal and how successful

each of those strategies was.

2. Students implement a strategy of their own design to mark a ballot for a candidate.

3. Students implement the flood-fill algorithm for fully marking a circle.

4. Students implement a method for marking the circle with an X.

5. Students implement an Election class with a method that returns an array of

thousands of ballots marked with specified percentages for various candidates.

6. Students implement a certain percentage of invalidly marked ballots.

www.manaraa.com

 170

7. Students implement the readBallot() method that can determine the candidate(s)

marked on a ballot.

8. Students implement a countBallot() method that throws out invalidly marked ballots

and correctly increments the tally for the candidate marked.

9. Students implement the tallyElection() method that counts all the votes and reports

the election results.

Teaching Strategies

Counterexamples, guided discovery, revisiting concepts and experimentation.

When presenting the flood-fill algorithm, a helper-program is distributed to help

give students an intuitive feel for recursion's depth-first approach. The program

performs the floodFill() method, but instead of drawing the pixels in real time, saves

them in an array for drawing them slowly so that students can observe the sequence. The

multiply-recursive method floodFill() appears as follows:

void floodFill(int x, int y, color targetClr) {

 MyPoint pt = new MyPoint(x, y);

 color clr = get(x, y);

 if (clr == targetClr && !contains(pts, pt)) {

 pts.add(pt);

 floodFill(x, y-1, targetClr); // 1

 floodFill(x, y+1, targetClr); // 2

 floodFill(x-1, y, targetClr); // 3

 floodFill(x+1, y, targetClr); // 4

 }

}

As students experiment with rearranging the numbered lines, they can observe the

different directions in which the pixels are drawn.

The readBallot() method that examines a ballot's pixels revisits/reuses the nested

for-loop iterative control structure that students learned in the previous unit. The method

www.manaraa.com

 171

looks at the circle next to each candidate and compares white pixels on the unmarked

ballot with corresponding pixels on the marked ballot – if the corresponding pixel is a

different color, the voter marked that candidate:

// returns candidate voted for (3-8) or 0 if invalid ballot

// x, y is the top left corner of a square bounding the

circle

// wh is the number of pixel rows/cols to process

boolean readBallot(int candidate) {

 int x = 453;

 int y = 34 * candidate - 68;

 int wh = 25;

 for (int row = x; row <= x + wh; row++) {

 for (int col = x; col <= y + wh; col++) {

 color clrU = img.get(col, row); // Unmarked Ballot

 color clrM = get(col, row); // Marked Ballot (screen)

 if (clrU == color(255) && clrM != clrU) {

 return true;

 }

 }

 }

 return false;

}

Instructor should point out the similarity of the structure of this nested for-loop to the

problems from Section 7. Instructor then should make the point that in both cases, the

code is processing a 2-D space / matrix row-by-row, from top-left to bottom-right.

www.manaraa.com

 172

Section 9. Around the World in 24 Days

Essential Questions

How can software be used to study and solve

problems in Human Geography?

Supporting Questions

Why is there a need for the International

Dateline?

How can you use the sin and cos functions to

position objects around the edges of a circle?

Why does one need to treat the area around a

circle's 0º/360º boundary differently from the

rest of the circle?

How can one write a program that uses the same

code to handle both a stationary and rotating

Earth?

What types of discrepancies arise when one tries to use a discrete model to represent a

continuous system? What are some mechanisms to deal with these?

Description

Students build a simulation of a rotating Earth in order to model the phenomenon

described in Jules Verne's Around the World in 80 Days of an east-bound traveler who

circumnavigates the world and experiences one day more than an observer remaining at

the starting point. Three observers are placed on the surface, two of whom

circumnavigate the globe in opposite directions: (a) an East-bound traveler (yellow); (b) a

West-bound traveler (red); and (c) a stationary observer (white). After 24 days, the two

travelers return to the starting point to rejoin the stationary observer. The east-bound

traveler will have seen 25 sunrises, and the west-bound traveler will have seen 23

sunrises. The simulation sheds light on the reason for the establishment of the

International Date Line.

Students begin by downloading 96 satellite images of Earth using the View from

Earth website (http://www.fourmilab.ch/cgi-bin/Earth). These represent snapshots taken

www.manaraa.com

 173

over a 24-hour period spaced at 15-minute intervals. So that the surface of the Earth is

half in shadow, the date chosen is either the Spring or Autumnal Equinox with Latitude =

90°N as if the satellite is positioned over the North Pole. Longitude is arbitrary, but 72°E

was chosen so that Los Angeles is at the top of the simulation.

Students load the images into an array and implement the animation using a

circular queue, which displays a stationary Earth with a moving terminator (the boundary

line separating day and night). Students are already familiar with Processing's 2-D

transformation operations from the Word Cloud and McClure units. They similarly

implement rotation by translating the coordinate system origin to the center of the

window, performing the rotation, and translating the origin back to the top left corner. As

in the Word Cloud unit, students again bracket transformations between pushMatrix()

and popMatrix() to independently rotate several objects simultaneously. The final

rotation effect is that the Earth rotates and the terminator is stationary. A toggle variable

controls rotation.

Earth, Sunrise and Traveler classes are implemented. A conditional expression

for enabling a stationary traveler to detect a sunrise is initially expressed using

normalized degree measurements to keep traveler and sunrise angles within the same

range. The conditional expression is modified as more cases are accommodated,

culminating with a solution for the edge condition at 0°/360°. The final expression

implements a sector-point intersection model.

Movement for travelers is implemented using a speed instance variable which is

positive for traveling west; negative for traveling east; or 0 for no movement. Students

discover that sunrise detection breaks down for moving travelers: at some point during

www.manaraa.com

 174

their circumnavigations - depending upon starting values for sunrise and traveler - the

East traveler misses a sunrise and the West traveler clocks a double sunrise. An analogy

to an escaping prisoner avoiding detection by a moving flashing searchlight is made. The

problem is solved by narrowing or expanding the sector by the traveler's speed, and

students consider the side-effects that occur when representing a continuous system with

a discrete model.

Key Assignments

1. Students download 96 images of Earth and create an animation showing a complete

24-hour light cycle. The animation is that of a stationary Earth and a moving solar

terminator.

2. Students implement an option for a stationary terminator and a rotating Earth.

3. Students implement an Earth class that does the bookkeeping involved in tracking

and incrementing its angular position.

4. Students implement a Traveler class – although the first Traveler object created is

stationary. Like the Earth, the Traveler keeps track of it angular position, and, when

the earth rotates, changes its angular position at an identical rate to maintain the same

location on the Earth. A Traveler object displays as a number, indicating the number

of sunrises it has "seen".

5. Students implement a Sunrise class to keep track of the terminator's angular position.

6. Students implement a normalize() method that keeps all angles in the range 0 <=

angle < 360.

www.manaraa.com

 175

7. Students implement Traveler methods seeSunrise() and incSunrises(). The

seeSunrise() method revisits the boundary problem students first encountered in

CodingBat's parrotTrouble problem.

8. Students implement traveling for a Traveler object, using a speed variable.

9. Students correct the seeSunrise() method to account for the longer or shorter sector

width needed to detect a sunrise when a Traveler object moves east or west,

respectively. The length of the sector's arc is adjusted by the Traveler object's speed.

Teaching Strategies

Modeling, counterexamples, guided discovery and experimentation.

To familiarize students with animation concepts, at the start of the unit, students

write a program that animates Eadweard Muybridge's galloping horse photographs. The

animation shows that all four feet of a horse are simultaneously off the ground at one

point during a gallop cycle. Instructor stresses that this phenomenon is easier to grasp by

seeing it in context within an animation rather than as a single still photograph.

Students revisit the edge/boundary problem they encountered when crafting the

conditional expressions for CodingBat's parrotTrouble problem.

When implementing display() for the Traveler object, students are instructed to

keep the number at the same position "height" above the Earth no matter the Traveler's

angular position. This involves explicitly calculating the left and top coordinates for the

text() method (mathematically centering the number about its (x, y) position), then using

the API's textAlign() method. When students asked why they had to bother calculating

the left and top coordinates, only to comment out the code, the instructor tells them that

www.manaraa.com

 176

these are the same calculations the textAlign() method makes to center text horizontally

and vertically.

Figure 15A. East bound traveler is just to

the west of the sector at Time 1.

Figure 15B. East has moved just to the

east of the next sector at Time 2.

No sunrise is detected!

To model the side-effect of using a discrete model with a constant sector width

for traveling objects, the instructor distributes a Moving Traveler program that illustrates

how, if the coordinates are inauspicious, an east-bound traveler can miss detection of a

sunrise (Figure 15) and how a west-bound traveler can detect the same sunrise twice

(Figure 16). The program shows the overlap between sector and traveler and records a

sunrise event at these junctions.

The program also allows the user to widen or narrow the sector in order to

illustrate how this adjustment can correct the detection errors (Figures 17 and 18). Note

that the adjustment to the sector width occurs at the tail end (eastern edge), and the

amount of the adjustment is the distance the traveler moves during an interval.

To assess understanding, students are instructed to write two paragraphs

describing how each of the two errors occur and how each is corrected by an appropriate

sector width adjustment.

www.manaraa.com

 177

Figure 16A. West bound traveler is at the

west edge of the sector at Time 1.

A sunrise event is detected.

Figure 16B. West has moved to the east

edge of the next sector at Time 2.

A 2
nd

 sunrise event is detected!

Figure 17A. East bound traveler is to the

west of the widened sector at Time 1.

No change in behavior.

Figure 17B. East is within the widened

sector at its east edge at Time 2.

A sunrise event is now detected!

Figure 18A. West bound traveler is at the

west edge of the narrowed sector at Time 1.

A sunrise event is detected.

Figure 18B. West is now just outside the

east edge of the next sector at Time 2,

because the sector has been narrowed at

this end.

No 2
nd

 sunrise event is detected!

www.manaraa.com

 178

Section 10. Galileo's Revolution and Astronomy

Essential Questions

How can a software model of the Solar System help us understand astronomical

phenomena such as the phases of Venus, retrograde motion of Mars, and the infrequency

of solar eclipses?

Supporting Questions

Why was the discovery of the phases of Venus so controversial and so significant

historically?

How does texture mapping work?

What are the math functions needed to describe an elliptical orbit in 2D?

What adjustment does one need to make to add a 3
rd

 dimensional vertical movement to an

orbit to implement ecliptic tilt?

How do you position the camera to view simulations of astronomical events?

Description

To provide background, the instructor guides students through the use of

planetarium software, such as the proprietary Orion Starry Night or a free downloadable

equivalent. Viewing the skies from any arbitrary location on Earth (such as one's home

city) and using time-lapse settings, students view close-ups of Mercury and Venus as they

go through their Moon-like phases, and observe Mars in retrograde over a period of

roughly six months every two years.

Students then read and discuss Bertolt Brecht's play Life of Galileo, and write an

essay in response to several possible prompts described in Key Assignments. Major

www.manaraa.com

 179

themes are (a) faith vs. doubt; (b) integrity vs. personal ambition; and (c) societal

responsibility.

Students build a Copernican/heliocentric simulation of the inner solar system

planets plus Jupiter, in order to view astronomical observations from various

perspectives. The simulation replicates the phases of Venus, Mars in retrograde, and

the infrequency of solar eclipses, both partial and total. Students create a 3-D

simulation and use transformations in 3 dimensions to position spherical objects

representing the sun, planets and moon. Although the simulation cannot be to scale –

because the planets would be too small to see – distances from the sun and planet sizes

are consistent relative to one another. For similar reasons, elliptical orbits are

approximated as circles. Orbital tilts for each planet and the moon are implemented

relative to the ecliptic plane. The add-on Processing library shapes3d is used to add

texture mapped skin images to the surface of the planetary spheres and to position the

entire simulation within a surrounding static sphere whose skin is a star map. Students

write methods to position and aim the camera in any direction in order to view the model

not only from Earth, the planets and the sun, but from lateral and overhead views of the

solar system. Students write methods to move the camera through a 3-D space. Finally,

students write a second program to simulate the Ptolemaic/geocentric solar system model

in order to understand what phenomena the model did and did not account for, and so

help explain its nearly 2,000 year longevity.

Key Assignments

1. Students write an essay about the play Life of Galileo in response to several possible

prompts:

www.manaraa.com

 180

a. A recurrent theme in the play is FAITH vs. DOUBT. In Scene 1, Brecht discusses

this as it relates to science. In subsequent scenes, the references to faith/doubt are

related to religion and the political/social order (the nobility ruling over the peasants).

Discuss Brecht's ideas about faith and doubt as they come up during the course of the

play.

b. Galileo uses his intelligence for three things: (a) trying to find a way to live well

and be comfortable, (b) searching for scientific truth, and (c) trying to stay alive and

out of trouble with the authorities. Discuss Galileo's use of cunning (shrewdness,

cleverness, deception) to do all three as he negotiates the demands of the various

authorities from the church and state (including the university and the city) that

oppose him.

c. In Scene 7, the Little Monk argues that scientific truth should be abandoned for the

sake of the peasants. Discuss his rationale (reasoning/reasons) for this stance and

Galileo's vigorous response. Discuss the connection between this scene and the 2

lines at the end of Scene 12:

Unhappy is the land that has no hero.

Unhappy is the land that needs a hero.

2. Students write a 3-D program that places a yellow sphere (sun) in the center of the

window using transformations.

3. Students use 3-D transformations to implement a planet revolving around the sun in a

circular orbit.

4. Students implement the 4 terrestrial planets Mercury, Venus, Earth and Mars, and

the gas giant Jupiter using diameters and orbital radii relative to each other. The

www.manaraa.com

 181

planets will be many times larger than scale, and all planets will orbit in the same

ecliptic plane.

5. Students implement inclinations for all planets except Earth, i.e. their orbits are tilted

relative to the ecliptic plane.

6. Students implement the Earth's Moon revolving around the Earth (diameter relative

to Earth, but orbital radius not).

7. Students implement rotation of planets, sun and moon about their axes.

8. Students implement Earth's axial tilt (23º).

9. Students collect texture mapped images of the planets, sun and moon, and implement

texture mapping so that they are drawn with realistic looking surfaces.

10. Students collect an appropriate texture mapped image of the stars to wrap on a super-

large sphere that encloses the entire simulation.

11. Students write methods to position the camera above the ecliptic plane and to its

frontal side.

12. Students implement methods to position the camera on each of the moving planets

pointing to the sun.

13. Students implement a method to view Mars from Earth.

14. Students implement a second method to view Mars from Earth, but fixing the camera

on a point far beyond Mars in order to view Mars' motion in retrograde.

15. Students implement methods to control the speed and direction of the simulation so

that the phenomena of solar eclipses can be viewed.

16. Students implement methods for moving the camera through space, rotating left and

right, up and down, and moving forwards and backwards.

www.manaraa.com

 182

Teaching Strategies

Counterexamples, guided discovery and experimentation.

The heliocentric (Copernican) model of the solar system allows students to view

the complete cycle of Venus's phases as seen from Earth. The companion program that

simulates the geocentric (Ptolemaic) epicycle model demonstrates the impossibility of

observing both a completely dark and fully lit Venus. When students subsequently read

Bertolt Brecht's play Life of Galileo, they learn that it was this single celestial observation

– made possible by the newly invented telescope – that was a pivotal point in the further

erosion of papal power, already weakened by the Reformation. Although Galileo himself

was put under house arrest for the remainder of his life, his discoveries further loosened

the Church's capacity to impede the pace of science during the Renaissance.

On the pedagogic level, this unit taken in its entirety extends and clarifies

students' understanding of events 400 years old. It does so through the use of student-

written software that is able to clarify the true nature of a celestial phenomenon, one

whose logical implications had huge historic, social and political ramifications. Because

of its many facets, the unit contains multiple points at which students can make engaging

connections.

If placing problems in real-world contexts answers the question "How can I use

this knowledge?", providing historical and social contexts allows students to ask "What is

the human/societal impact?" At this point, students step back, gain perspective and look

at the big picture to observe how their work can be used and misused. This unit brings up

powerful ethical questions for scientists and engineers – such as the ethical role of the

scientist – that dwarf such standard fare concerns as intellectual property.

www.manaraa.com

 183

For implementing the movement of the camera to view the simulation from

different perspectives, students use "dummy" Planet class variables named eyePlanet

and centerPlanet to hold the position and direction of the camera, respectively. In this

way, students are introduced to the use of references variables that can hold values

referring to objects. Implementing a way to observe Mars in retrograde from Earth is

done in two ways. One is to simply assign Earth to eyePlanet and Mars to centerPlanet,

the effect of which is to keep Mars statically fixed in the center of the viewport, while the

star background moves in reverse direction relative to Mars. The second is to point the

camera at Mars, then project a vector far beyond Mars (say 100 times the Earth-Mars

distance), and capture that position to store in centerPlanet. The effect of this second

strategy is to fix the camera direction on a static star background, allowing one to observe

Mars move and reverse directions. The calculation of this distant position is done with

vectors (see below).

To implement keystroke-driven camera movement for left and right rotation,

students first consider rotation around an axis parallel to the y-coordinate axis (students

will later implement rotation around an axis in any direction using matrices). Students

are introduced to the arctan function to derive the angle that the camera vector projects

onto the X-Z coordinate plane. Students learn, however, that the angles returned from

this function are doubly ambiguous because tangent values are the same for quadrant

pairs I and III, and II and IV. Therefore in order to map the correct angle, students learn

that they need to also utilize the signs of the cosine and sine values in the calculation.

Students use an Excel spreadsheet to quickly see that the arctan returns values in the

range –π/2 to π/2 (-90º to 90º). They then expand this spreadsheet to show

www.manaraa.com

 184

corresponding sine, cosine and tangent values for all 360º, and the (differing) angle

values returned by arctan. Using the data from each quadrant, students write a camera

method that correctly maps degrees based on arctan, cosine and sine values as angular

position is incremented or decremented.

To implement keystroke-driven camera movement forwards and backwards,

students need to project component vectors onto all three axes, the same technique used

to calculate a distant point when viewing the retrograde motion of Mars. Students will

recognize that calculating the magnitude of these component vectors is similar to

calculating the slope between two points. To calculate the slope between any two points,

students know that it doesn't matter which point is subtracted from the other as long as

one is consistent, i.e. Δx = x
2
 – x

1
 and Δy = y

2
 – y

1
 OR Δx = x

1
 – x

2
 and Δy = y

1
 – y

2
.

This is because the signs of the two differences cancel each other when the two are

positioned as a ratio: Δy / Δx. For example, a line defined by the origin and a point in

quadrants I or III yields two positive differences or two negative differences, resulting in

a positive slope. A line similarly defined in quadrants II an IV yield one positive and one

negative difference, resulting in a negative slope.

With the component vectors, however, the order in which one subtracts the points

is critical because (a) we are calculating the effective contribution of each vector

separately, and (b) a vector has not only magnitude but direction. The instructor

therefore has students calculate the extrapolated point using both possible orientations, so

that students discover that the correct order is destination value minus source value – or

for the camera variables, centerX minus eyeX, etc. Students are asked to write a short

paragraph explaining how to do these calculations.

www.manaraa.com

 185

Section 11. Molecular Modeling and DNA

Essential Questions

How can we use Molecular Modeling

software to explain how the opposing

strands of a DNA double helix are

structurally held together?

How can Molecular Modeling software

help explain how the hydrogen bonds

between the DNA bases provide the

mechanism by which genes are

faithfully replicated?

How can we use Molecular Modeling

software to help us understand how

point mutations arise?

Supporting Questions

What kinds of social and emotional obstacles might hinder scientific collaboration?

Which geometry concepts are needed to draw the DNA bases?

How can you use sine and cosine functions to determine the positions of atoms at

irregular angle positions?

What are the advantages/disadvantages in keeping many separate, but corresponding, lists

of properties rather than a list of objects, each of which contains all the properties?

What are the advantages in using superclasses and subclasses?

How can the additive trigonometry identities be used to implement rotation?

What are advantages/disadvantages to implementing translation and rotation using

math, as opposed to the transformation methods?

Is there a way to implement reflection using Processing's transformation methods?

How do you program the GUI for selection and movement of objects using the mouse?

How do you implement multiple selection?

Description

Students build a 2-D molecular modeling program to examine the hydrogen

bonding, between purine and pyrimidine bases, that holds the two anti-parallel strands of

the DNA double helix together.

The unit begins with students familiarizing themselves with the freely available

3-D molecular modeling program MolSoft ICM- Browser, and exploring ways to

configure the four DNA bases Adenosine, Guanine, Cytosine and Thymine within the

program. The molecule files will be downloaded from the NYU Library of 3-D

www.manaraa.com

 186

Molecular Structures. Students then proceed to calculate the angles of the pyrimidine

(hexagon) and imidazole (pentagon) rings and use BYOB (UC Berkeley) to correctly

position each base's ring and functional group atoms. During this process, students design

their code to reflect the biochemical nomenclature of the molecule's major features. They

also abstract shared features of the molecules into common methods for building

pyrimidine rings, imidazole rings, and adding functional groups at any of the 6

pyrimidine atoms.

Once they are familiar with the structure of the 4 bases, students go about

building the 2-D molecular modeling program in Processing. They use the sine and

cosine functions to create a method to position atoms using polar coordinates. They use

getter methods to encapsulate the x- and y-coordinates of each atom. These methods

become the central repository for calculating translated, rotated, and mirrored coordinates

for each atom. Students use a geometry proof to find the additive angle formulas for sine

and cosine. These are used to derive the rotation formulas for x- and y-coordinates, which

are then implemented in the program.

Students study the chemistry of polar bonds and hydrogen bonds. They write

methods for deciding which hydrogen atoms are electropositive and which nitrogen and

oxygen atoms are electronegative. The optimal distance for intermolecular hydrogen

bonds is indicated by color and line thickness. Students program the GUI for object

selection with mouse, control key and lassoing. Move, rotate, and mirror-image actions

are driven by mouse events.

www.manaraa.com

 187

At unit's end students use their programs to display normal A-T and G-C

pairings. They also perform predictive tasks, i.e. find configurations for rare A-C and G-

T pairings, which represent point mutation situations.

To anchor this project in a social setting, students study the BBC film Double

Helix, which relates the little known story of the discovery of the DNA double helix by

Watson and Crick, who used the x-ray diffraction data of the biophysicist Rosalind

Franklin for building their model. Although her data was crucial to their calculations,

which won them the Nobel Prize, they did not acknowledge her contribution until long

after her death. Students write an essay about the film in response to the prompt

described in Key Assignments.

Key Assignments

1. Lesson 1: Students study the geometry of hexagons and pentagons in order to write

a BYOB program that correctly draws the angles and bond lengths for the 4 DNA

base in pyrimidine and purine ring nomenclature atom order.

2. Lesson 2: Students organize and simplify their BYOB programs by using iteration

and sequestering duplicate code into parameterized methods that have meaningful

biological and/or chemical significance, e.g. drawPyrimidine(), drawImidazole(),

addAmine().

3. Lesson 3: Students write a Processing program – organized along the principles

learned in the BYOB lessons – that correctly displays classes for the 4 DNA bases at

the origin (translated to the center of the drawing window).

4. Lesson 4: Students modify their Processing program to implement polymorphism,

using the common parent class Molecule.

www.manaraa.com

 188

5. Lesson 4: Students implement translation, so that the user can move/reposition the

DNA bases. Students program the GUI to use the Arrow keys for gross movement,

and the Ctrl + Arrow key combinations for finer movement.

6. Lesson 4: Students complete a geometric proof for the Additive Trigonometric

Identities, and use these to derive expressions for implementing 2-D rotation.

7. Lesson 4: Students implement rotation. The PageDown and PageUp keys are used

for rotation clockwise and counter-clockwise, respectively, with the option of using

them in combination with the Control key for finer movement.

8. Lesson 4: Students implement reflection, so that users can flip molecules

horizontally. The 'M' key (for "mirror") will toggle the state of the reflected

molecule.

9. Lesson 5: Students implement mouse events in the GUI. Students implement single

and multiple mouse selection using (a) clicking; (b) clicking in combination with the

Shift and Control keys; and (c) lassoing. They implement the mouse wheel for

rotation. They implement drag-and-drop.

10. Lesson 6: Students implement electropositive and electronegative chemical

properties into the bases, so that they can form – and display – intermolecular

hydrogen bonds.

11. Lesson 6: Students use the program to show the normal hydrogen bonds between A-T

and G-C, and to discover at least one configuration each for point-mutation-causing

hydrogen bonds between A-C and G-T.

12. Lesson 7: Students write an essay about the film Double Helix (a.k.a. Life Story) in

response to the prompt:

www.manaraa.com

 189

The film Double Helix takes place in the years 1951-1953. At the beginning of the

story, Dr. Rosalind Franklin returns from Paris to London to take a research position

at King's College. There, as one of the few women researchers, she experiences first-

hand the effects of a work place imbued with sexist attitudes and where men have

traditionally been in charge. One of the effects of this suffocating environment is that

she feels isolated in her work.

a) Think of scenes where Franklin feels, or is in fact, isolated or marginalized (not

treated seriously or equally). Contrast these scenes with those where Franklin finds

ways out of her isolation to form connections with other supportive characters.

(b) In the film, Franklin's character resists a system that puts her at a disadvantage.

Think of scenes where these she pushes back and how effective her efforts are in

terms of successfully getting the changes (in behavior, or legally) that she might have

wanted. Analyze these actions/efforts and discuss reasons why they might have been

either effective or ineffective.

(c) At the end of the film, Bragg tells Franklin: "This race, this winning and losing,

it's not the way I was taught to do science." This remark speaks to the main

characters' motivations for doing science. Compare and contrast the motivations of

Crick, Watson, Franklin and Wilkins. Remember that the characters' motivations

refer not just to abstract issues about the pursuit of science, but equally – if not more

– about what they enjoy about their day-to-day work

Teaching Strategies

Counterexamples, guided discovery, experimentation and CONNECTIONS.

One central strategy is the use of cross-curricular concepts, especially geometry

and biology, to write a program that has both descriptive and predictive value vis-à-vis

the bonding between the anti-parallel strands of DNA. Students must connect concepts

from other disciplines in order to write an accurate 2-D molecular modeling program.

Students will also see that CS is an engineering discipline, one that can be used to solve

problems in other academic fields.

www.manaraa.com

 190

Figure 19. Derivation of Additive

Trigonometric Identities

Figure 20. Derivation of Formulas for

Calculating New Coordinates after Rotation

about the Origin

One powerful example of making CONNECTIONS to other disciplines is the section

where students implement molecule rotation. Changing the coordinates of a molecule's

atom is an alternate means for rotating objects as opposed to using Processing's

transformations. To do so, students learn – through guided discovery – a geometric proof

for the Additive Trigonometric Identities, sin(α + β) and cos(α + β). Because the

prerequisite for the course is proficiency in Algebra 1, students will have already taken

concurrently the lion's share of a Geometry course – or an Algebra 2 course – by the time

this final unit is encountered near the end of the school year. Moreover, in the Around

the World unit, students have already been learned about and used the sin and cos

functions. The proof involves nothing more than using the definitions of sin and cos on a

specific right triangle, equating opposite sides, then isolating sin(α + β) and cos(α + β)

(Figure 19). Once students complete the proof, they use the identities in another

geometrically constructed diagram that sets up the theory for rotating a single point about

the origin (Figure 20). Students can now derive the formulas for the x- and y-

www.manaraa.com

 191

coordinates (x2, y2) for a point (x1,y1) that is rotated about the origin by substituting in the

additive trig identities, then substituting in the definitions of sin and cos (x' = xcosβ –

ysinβ and y' = ycosβ + xsinβ). Finally, students implement these simple formulas in

their program and visually confirm that the molecules they've constructed rotate when the

programs are run. Students are thus able to see that theoretical math does indeed have

concrete applications.

www.manaraa.com

 192

REFERENCES

Abu-Rabia, S., & Sanitsky, E. (2010, June). Advantages of Bilinguals Over Monolinguals

in Learning a Third Language. Bilingual Research Journal, 33(2), 173 - 199.

doi:10.1080/15235882.2010.502797

Altshuler, D., Pollara, V., Cowles, C., Van Etten, W., Baldwin, J., Linton, L., & Lander,

E. (2000, Sep 28). An SNP map of the human genome generated by reduced

representation shotgun sequencing. Nature, 407(6803), 513-516. Retrieved from

www.nature.com

Alvarado, C., & Dodds, Z. (2010, March 10-13). Women in CS: An Evaluation of Three

Promising Practices. SIGSCE '10 Proceedings of the 41st ACM Technical

Symposium on Computer Science Education, 57-61.

doi:10.1145/1734263.1734281

Amirtha, t. (2014, April 21). This Is Your Brain On Code, According To Functional MRI

Imaging. Retrieved from Fast Company:

http://www.fastcompany.com/3029364/this-is-your-brain-on-code-according-to-

functional-mri-imaging

Applin, A. G. (2001). Second Language Acquisition and CSl: Is * == ** ? Proceedings of

the 32nd SIGCSE Technical Symposium on Computer Science Education, 174-

178. doi:10.1145/366413.364579

Arditti, A., & Skirble, R. (2010, April 27). In Schools, a Way to Keep Language From

Getting in the Way of Science. Retrieved from Learning English, Voice of

America: http://learningenglish.voanews.com/content/in-schools-a-way-to-keep-

language-from-getting-in-the-way-of-science-92244839/117660.html

www.manaraa.com

 193

Azemi, A., & D’Imperio, N. (2011). New Approach to Teaching an Introductory

Computer Science Course. ASEE/IEEE Frontiers in Education Conference (pp.

S2G-1 to S2G-6). Rapid City, South Dakota: IEEE.

doi:10.1109/FIE.2011.6142988

Bahier, D. J. (2005). Teaching Secondary and Middle School Mathematics. Boston:

Pearson: Allyn and Bacon.

Bailey, N., Madden, C., & Krashen, S. D. (1974). Is there a ‘natural sequence’ in adult

second language learning? Language Learning, 24(2), 235–243. doi:

10.1111/j.1467-1770.1974.tb00505.x

Balsim, I., & Feder, E. (2008). The Synthesis of Mathematical Foundations with Real

World Applications in Computer Science Education. Proceedings of the 2008

International Conference on Frontiers in Education: Computer Science and

Computer Engineering, FECS, 154-160. Retrieved from

http://dblp.org/rec/html/conf/fecs/BalsimF08

Beck, R., Burg, J., Heines, J., & Manaris, B. (2011). Computing and Music: A Spectrum

of Sound. SIGCSE'11 - Proceedings of the 42nd ACM Technical Symposium on

Computer Science Education, p 7-8. doi:10.1145/1953163.1953171

Bell, T., Witten, I. H., & Fellows, M. (2006). Computer Science Unplugged: An

enrichment and extension programme for primary-aged children. Christchurch:

Creative Commons.

Bennedsen, J., & Caspersen, M. E. (2007, June). Failure Rates in Introductory

Programming. Inroads - The SIGCSE Bulletin, 39(2), 32-36.

doi:10.1145/1272848.1272879

www.manaraa.com

 194

Bennedsen, J., & Caspersen, M. E. (2008). Abstraction Ability as an Indicator of Success

for Learning Computing Science? International Computing Education Research

(ICER'08) (pp. 15-25). Sydney, Australia: Association forComputing Machinery

(ACM). doi:10.1145/1404520.1404523

Bennedsen, J., & Caspersen, M. E. (2012, June). Persistence of elementary programming

skills. Computer Science Education, 22(2), 81-107.

doi:10.1080/08993408.2012.692911

Berent, G. P., Kelly, R. R., & Porter, J. E. (2008, June). Deaf Learners’ Knowledge of

English Universal Quantifiers. Language Learning, 58(2), 401–437.

doi:10.1111/j.1467-9922.2008.00445.x

Bialystok, E. (1978). A theoretical model of second language learning. Language

Learning, 28(1), 69-83. doi:10.1111/j.1467-1770.1978.tb00305.x

Black, E. (2001). IBM and the Holocaust. Dialog Press. Retrieved from

http://www.ibmandtheholocaust.com/

Bloch, S. (2014, Oct 14). SIGSCE Listserv (Member Forum). Communication Posting.

Bloomfield, L. (1933). Language. Chicago: University of Chicago Press.

Blum, L., Frieze, C., Hazzan, O., & Dias, M. (2006). A Cultural Perspective on Gender

Diversity in Computing. (long version of a paper presented at SIGCSE 2006).

Retrieved from http://www.cs.cmu.edu/~lblum/PAPERS/CrossingCultures.pdf

Blum, L., Frieze, C., Hazzan, O., & Dias, M. B. (2006, March 1-5). Culture and

Environment as Determinants of Women’s Participation in Computing: Revealing

the “Women-CS Fit”. SIGCSE '06 Proceedings of the 41st ACM Technical

www.manaraa.com

 195

Symposium on Computer Science Education, 22-26.

doi:10.1145/1121341.1121351

Brahier, D. J. (2005). Teaching Secondary and Middle School Mathematics (2 ed.).

Boston, MA: Pearson Education Inc.

Bransford, J., Sherwood, R., Vye, N., & Rieser, J. (1986, October). Teaching Thinking

and Problem Solving: Research Foundations. American Psychologist, 41(10),

1078-1089. doi:10.1037/0003-066X.41.10.1078

Braught, G., Wahls, T., & Eby, L. M. (2011, Feb). The Case for Pair Programming in the

Computer Science Classroom. ACM Transactions on Computing Education

(TOCE), 11(1), Article No. 2. doi:1921607.1921609

Bringsjord, S., & Ferrucci, D. A. (2000). Artificial Intelligence and Literary Creativity:

Inside the Mind of BRUTUS, a Storytelling Machine. Mahwah, NJ: Lawrence

Erlbaum Associates.

Brown, R., & Kumar, A. (2013). The Scientific Method: Reality or Myth. Journal of

College Science Teaching, 42(4), pp. 10-11. Retrieved from

http://www.jstor.org/stable/43631913

Caristi, J., Sloan, J., Barr, V., & Stahlberg, E. (2011). Starting a Computational Science

Program. SIGCSE'11 - Proceedings of the 42nd ACM Technical Symposium on

Computer Science Education, p 3-4. doi:10.1145/1953163.1953167

Carter, D. (2007). AP Computer Science Teacher's Guide. New York: College Board.

Carter, D. (2012, March). Highlights of CS Survey, State-by-State Analysis. CSTA Voice,

Vol. 8(1), pp. 4-5. Retrieved from

www.manaraa.com

 196

http://csta.acm.org/Communications/sub/CSTAVoice_Files/csta_voice_03_2012.

pdf

Carter, L. (2006, March 1-5). Why Students with an Apparent Aptitude for Computer

Science Don’t Choose to Major in Computer Science. SIGCSE ’06. Houston,

Texas. doi:10.1145/1124706.1121352

Carter, L. (2007). Work in progress - Introduction to computers: An interdisciplinary

approach. Proceedings - Frontiers in Education Conference, FIE, S1J1-S1J2.

doi:10.1109/FIE.2007.4417820

Chesterfield, R., & Chesterfield, K. (1985). Natural Order in Children's Use of Second

Language Learning Strategies. Applied Linguistics, 6(1), 45-59.

doi:10.1093/applin/6.1.45

Chomsky, C. (1969). The Acquisition of Syntax in Children from 5 to 10. Cambridge,

MA: MIT Press.

Chomsky, N. (1959). On Certain Formal Properties of Grammars. Information and

Control, 2, 137-167. doi:10.1016/S0019-9958(59)90362-6

Chomsky, N. A. (1957). Syntactic Structures. The Hague/Paris: Mouton.

College Board. (2015). AP Data: National Report. Retrieved from College Board:

https://research.collegeboard.org/programs/ap/data

Computer Science 131. Computing for Poets. (n.d.). Retrieved from Wheaton College

Catalog, Computer Science: http://wheatoncollege.edu/catalog/comp_131/

Conway, C. M., Karpicke, J., & Pisoni, D. B. (2007). Contribution of Implicit Sequence

Learning to Spoken Language Processing: Some Preliminary Findings With

www.manaraa.com

 197

Hearing Adults. Journal of Deaf Studies and Deaf Education, 12(3). Retrieved

from http://www.jstor.org/stable/42658884

Corder, S. P. (1967, November). The Significance of Learner's Errors. International

Review of Applied Linguistics in Language Teaching, 5(4), 161-170.

CSTA Standards Task Force. (2011). CSTA K-12 Computer Science Standards. New

York: CSTA / ACM. Retrieved from

http://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf

Cuny, J. (2011, May). Transforming Computer Science Education in High Schools.

Computer, 44(6), 107-109. doi:10.1109/MC.2011.191

Daly, T. (2009, Fall). Using introductory programming tools to teach programming

concepts: A literature review. The Journal for Computing Teachers, 1-6.

Retrieved from http://www.iste.org/jct

Denner, J., Werner, L., Sampe, S., & Ortiz, E. (2014). Pair Programming: Under What

conditions Is It Advantageous for Middle School Students? Journal of Research

on Technology in Education, 46(3), 277-296. Retrieved from

http://ejournals.ebsco.com/direct.asp?ArticleID=4CE28DBF1FBE0968C7D0

DNA Learning Center. (n.d.). The public Human Genome Project: mapping the genome,

sequencing, and reassembly. 3D animation. Retrieved from

http://www.dnalc.org/view/15477-The-public-Human-Genome-Project-mapping-

the-genome-sequencing-and-reassembly-3D-animation-.html

Dodds, Z., & Erlinger, M. (2013, July 1-3). MyCS: Building a Middle-years CS

Curriculum. ITiCSE’13, 330. doi:10.1145/2462476.2465611

www.manaraa.com

 198

Doom, T., Raymer, M., Krane, D., & Garcia, O. (2003, August). Crossing the

Interdisciplinary Barrier: A Baccalaureate Computer Science Option in

Bioinformatics. IEEE Transactions on Education, Vol. 46(No. 3).

doi:10.1109/TE.2003.814593

Dulay, H. C., & Burt, M. K. (1973). Should We Teach Children Syntax? Language

Learning, 23(2), 245-258. doi:10.1111/j.1467-1770.1973.tb00659.x

Eglash, R. (2003). Transformational geometry and iteration in cornrow hairstyles.

Retrieved from Culturally Situated Design Tools (Rensselaer Polytechnic

Institute): http://csdt.rpi.edu/african/CORNROW_CURVES/index.htm

Fellows, M., & Parberry, I. (1993, January). SIGACT Trying to Get Children Excited

About CS. Computing Research News, 5(1), 7. Retrieved from

https://larc.unt.edu/ian/pubs/crn1993.pdf

Fendel, D., Resek, D., Alper, L., & Fraser, S. (2008). Interactive Mathematics Program.

Key Curriculum Press. Retrieved from

http://www.mathimp.org/general_info/intro.html

Frieze, C., Quesenberry, J. L., Kemp, E., & Velazquez, A. (2012, July 31). Diversity or

Difference? New Research Supports the Case for a Cultural Perspective on

Gender Diversity in Computing. Journal of Science Education and Technology,

21(4), 423–439. Retrieved from http://www.jstor.org/stable/41674471

Fulton, B. S. (2005). Managing the Math Classroom for Maximum Success. Milville, CA:

Teacherto Teacher Press. Retrieved from

http://www.tttpress.com/uploads/2/0/4/2/20424731/managing_the_math_class.pdf

www.manaraa.com

 199

Garner, S., Haden, P., & Robins, A. (2005). My Program is Correct But it Doesn't Run: A

Preliminary Investigation of Novice Programmers' Problems. Proceedings of the

7th Australian Conference on Computing Education, ACE'05, 42, 173-180.

Retrieved from http://dl.acm.org/citation.cfm?id=1082446

Goldweber, M., Barr, J., Clear, T., Davoli, R., Mann, S., Patitsas, E., & Portnoff, S.

(2013, March). A Framework for Enhancing the Social Good in Computing

Education: A Values Approach. ACM Inroads, 4(1).

doi:10.1145/2432596.2432616

Goldweber, M., Little, J., Cross, G., Davoli, R., Riedesel, C., von Konsky, B., & Walker,

H. (2011). Enhancing the Social Issues Components in our Computing

Curriculum Computing for the Social Good. CMInroads, Vol. 2(No. 1).

doi:10.1145/1929887.1929907

Goode, J., Chapman, G., & Margolis, J. (2012, June). Beyond Curriculum: The Exploring

Computer Science Program. ACM Inroads, 3(2), pp. 47-53.

doi:10.1145/2189835.2189851

Gray, J. (2013, May). CS Principles Update. CSTA Voice, 9(2). Retrieved from

http://csta.acm.org/Communications/sub/CSTAVoice_Files/csta_voice_05_2013.

pdf

Hallet, R., & Venegas, K. (2011, Spring). Is Increased Access Enough? Advanced

Placement Courses, Quality, and Success in Low-Income Urban Schools. Journal

For The Education Of The Gifted, 34(3), 468-487.

doi:10.1177/016235321103400305

www.manaraa.com

 200

Holley, K. A. (2009, July 15). Understanding Interdisciplinary Challenges and

Opportunities. ASHE Higher Education Report, Vol. 35(2), 1-131.

Hour of Code. (2015). Retrieved from Hour of Code: https://hourofcode.com/us#

Hurson, A., & Sedigh, S. (2010). Transforming the Instruction of Introductory

Computing to Engineering Students. 2010 IEEE Transforming Engineering

Education: Creating Interdisciplinary Skills for Complex Global Environments.

doi:10.1109/TEE.2010.5508834

Impagliazzo, J., & McGettrick, A. (2007, October 10-13). New Models for Computing

Education. 37th ASEE/IEEE Frontiers in Education Conference, F3H-11 - FSH-

16. doi:10.1109/FIE.2007.4417991

Ivanitskaya, L., Clark, D., Montgomery, G., & Primeau, R. (2002, Winter).

Interdisciplinary Learning, Process and Outcomes. Innovative Higher Education,

Vol. 27(No. 2), 95-111. Retrieved from

http://link.springer.com/article/10.1023/A%3A1021105309984

Kane, J., & Mertz, J. (2012, January). Debunking Myths about Gender and Mathematics

Performance. Notices of the American Mathematical Society, Vol. 59(No. 1), 10-

21. doi:10.1090/S1088-9477-2012-00790-4

Kelleher, C., & Pausch, R. (2005, June). Lowering the Barriers to Programming: A

Taxonomy of Programming Environments and Languages for Novice

Programmers. ACM Computing Surveys, 37(2), 83–137.

doi:10.1145/1089733.1089734

Kelleher, C., Pausch, R., & Kiesler, S. (2007, April 28-May 3). Storytelling Alice

Motivates Middle School Girls to Learn Computer Programming. CHI 2007

www.manaraa.com

 201

Proceedings • Programming By & With End-Users.

doi:10.1145/1240624.1240844

Klein, J. T. (2005, Summer/Fall). Integrative Learning and Interdisciplinary Studies. Peer

Review, 9-10. Retrieved from

http://www.academia.edu/755632/Integrative_learning_and_interdisciplinary_stu

dies

Kliebard, H. (2004). In H. Kliebard, The Struggle for the American Curriculum 1893-

1958. New York and London: RoutledgeFalmer.

Konidari, E., & Louridas, P. (2010, March). When Students are not Programmers. ACM

Inroads, 1(1), 55-60. doi:10.1145/1721933.1721952

Krashen, S. (1981). Second Langage Acquisition and Second Language Learning.

Oxford: Pergamon Press, Inc.

Krashen, S. (1982). Principles and Practice in Second Language Acquisition. Oxford:

Pergamon Press Inc.

Krashen, S. (1985). The Input Hypothesis: Issues and Implications. Harlow: Longman.

Krashen, S. (1998). Comprehensible Output? System, 26(2), 175-182.

doi:10.1016/S0346-251X(98)00002-5

Krashen, S. (2004). The Power of Reading: Insights from the Research (2nd ed.).

Libraries Unlimited.

Kuhn, T. S. (1996). Anomaly and the Emergence of Scientific Discoveries. In T. S.

Kuhn, The Structure of Scientific Revolutions (3rd ed., p. 59). Chicago and

London: The University of Chicago Press.

www.manaraa.com

 202

Kumar, D. (2013, September). The Changing, Not Evolving Pedagogy of CS1. ACM

Inroads, 4(3), 36-37. doi:10.1145/2505990.2505994

Kummerfeld, S. K., & Kay, J. (2003). The neglected battle fields of Syntax Errors.

Proceedings of the fifth Australasian Conference on Computing Education,

Adelaide, Australia: Australian Computer Society, Inc; 03, 20. Retrieved from

http://dl.acm.org/citation.cfm?id=858416

Kuntze, M. (2004). Literacy acquisition and deaf children: A study of the interaction

between ASL and written English. ProQuest Dissertations and Theses. Retrieved

from https://searchworks.stanford.edu/view/5685734

Kurmas, Z. (2011, May 17). The Deep End of the Pool. Retrieved from Atomic Spin:

Atomic Object's blog on Software Design & Development:

http://spin.atomicobject.com/2011/05/17/the-deep-end-of-the-pool/

Lahtinen, E., AlaMutka, K., & Järvinen, H.-M. (2005, June 27–29). A Study of the

Difficulties of Novice Programmers. Proceedings of the 10th annual ITiCSE

conference, 14-18. doi:10.1145/1151954.1067453

Leinweber, L. (n.d.). WATOR. Predator-Prey Simulation. a java applet. Retrieved from

Larry's Cerebral Snack Bar: http://www.leinweb.com/snackbar/wator/

Linn, M. C., & Dalbey, J. (1985). Cognitive Consequences of Programming Instruction:

Instruction, Access and Ability. Educational Psychologist, 20(4), 191-206.

doi:10.1207/s15326985ep2004_4

List of African-American inventors and scientists. (2016, April 5). Retrieved from

Wikipedia: https://en.wikipedia.org/wiki/List_of_African-

American_inventors_and_scientists

www.manaraa.com

 203

Lyster, R., & Ranta, L. (1997). Corrective Feedback and Learner Uptake. Studies in

Second Language Acquisition, 19(1), 37-66. Retrieved from

http://people.mcgill.ca/files/roy.lyster/Lyster_Ranta1997_SSLA.pdf

Margolis, J., Estrella, R., Goode, J., Holme, J. J., & Nao, K. (2008). Stuck in the Shallow

End: Education, Race, and Computing. Cambridge, MA: MIT Press.

Margolis, J., Fisher, A., & Miller, F. (1999/2000, Winter). Caring about connections:

gender and computing. Technology and Society Magazine, IEEE, Vol. 18(No. 4),

13-20. doi:10.1109/44.808844

Margolis, J., Ryoo, J., Sandoval, C., Lee, C., Goode, J., & Chapman, G. (2012,

December). Beyond Access: Broadening Participation in High School Computer

Science. ACM Inroads, 3(4), 72-78. doi:10.1145/2381083.2381102

Martin, B., & Hearne, J. D. (1990, Jan). Transfer of Learning and Computer

Programming. Educational Techonology, 41-44. Retrieved from

http://eric.ed.gov/?id=EJ405758

Mattern, K., Shaw, E., & Ewing, M. (2011). Advance Placement Exam Participation: Is

AP Exam Participation and Performance Related to Choice of College Major?

Retrieved from http://professionals.collegeboard.com/profdownload/pdf/RR2011-

6.pdf

Mayer, R. E., Dyck, J. L., & Vilberg, W. (1986, July). Learning to Program and Learning

to Think: What's the Connection? Communications of the ACM, 29(7), 605-610.

doi:10.1145/6138.6142

www.manaraa.com

 204

McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G., & Mander, K. (2005).

Grand Challenges in Computing: Education—A Summary. The Computer

Journal, 48(1), 42-48. doi:10.1093/comjnl/bxh064

Menze, B. H., & Ur, J. (2012, March 19). Mapping patterns of long-term settlement in

Northern Mesopotamia at a large scale. PNAS Plus.

doi:10.1073/pnas.1115472109

Monti, M. M., Parsons, L. M., & Osherson, D. N. (2012). Thought Beyond Language:

Neural Dissociation of Algebra and Natural Language. Association for

Psychological Science, 23(8), 914-922. doi:10.1177/0956797612437427

Morgan, R., & Klaric, J. (2007). AP Students in College: An Analysis of Five-Year

Academic Careers. Retrieved from Research Report No. 2007-4:

http://professionals.collegeboard.com/profdownload/pdf/072065RDCBRpt07-

4_071218.pdf

Mounty, J. L., Pucci, C. T., & Harmon, K. C. (2014, July). How Deaf American Sign

Language/English Bilingual Children Become Proficient Readers: An Emic

Perspective. Journal of Deaf Studies and Deaf Education, 19(3), 333-346.

doi:10.1093/deafed/ent050

Myles, F. (2010, July). The development of theories of second language acquisition.

Language Teaching, 43(3), 320-332. doi:10.1017/S0261444810000078

Nassaji, H. (2012). The Relationship Between SLA Research and Language Pedagogy:

Teachers’ Perspectives. Language Teaching Research, 16(3), 337-361.

doi:10.1177/1362168812436903

www.manaraa.com

 205

National Council of Teachers of Mathematics. (2000). Executive Summary: Principles

and Standards for School Mathematics. Retrieved from NCTM:

http://www.nctm.org/uploadedFiles/Math_Standards/12752_exec_pssm.pdf

National Council of Teachers of Mathematics. (2000). Principles and Standards for

School Mathematics. NCTM, Inc.

Newell, W. H. (1994, Summer). Designing Interdisciplinary Courses. New Directions for

Teaching and Learning(No. 58). doi:10.1002/tl.37219945804

Newmark, L. (1966). How not to interfere in language learning. International Journal of

American Linguistics, 32, 77-87. Retrieved from

https://ncela.ed.gov/rcd/bibliography/BE015215

Ohta, A. S. (2001). Second language acquisition processes in the classroom: Learning

Japanese. Mahwah, NJ: Lawrence Erlbaum Associates.

Parnin, C. (2014, April 23). Scientists Begin Looking at Programmers' Brains: The

Neuroscience of Programming. Retrieved March 12, 2016, from Huffington Post :

http://www.huffingtonpost.com/chris-parnin/scientists-begin-looking-

_b_4829981.html

Parr, S., Byng, S., & Gilpin, S. (1999, February). Talking About Aphasia: Living with

Loss of Language After Stroke. Journal of Advanced Nursing, 29(2), 27.

doi:10.1046/j.1365-2648.1999.0918e.x

Perfetti, C. A., & Sandak, R. (2000, Winter). Reading Optimally Builds on Spoken

Language: Implications for Deaf Readers. Journal of Deaf Studies and Deaf

Education, 5(1), 32-50. doi:10.1093/deafed/5.1.32

www.manaraa.com

 206

Portnoff, S. (2012). Teaching HS Computer Science as if the Rest of the World Existed:

Rationale for a HS Pre-APCS Curriculum of Interdisciplinary Central-Problem-

Based Units that Model Real-World Applications. SIGCSE '12 Proceedings of the

43rd ACM technical symposium on Computer Science Education.

doi:10.1145/2157136.2157210

Pulimood, S., Shaw, D., & Lounsberry, E. (2011, March 9–12). Gumshoe: A Model for

Undergraduate Computational Journalism Education. SIGCSE’11, 529-534.

doi:10.1145/1953163.1953314

Radev, D., & Levin, L. (2009, September). Engaging High School Students in

Interdisciplinary Studies: Expanding the Pipeline. Computing Research News,

21(4). Retrieved from

http://cra.org/crn/2009/09/engaging_high_school_students_in_interdisciplinary_st

udies/

Rankin, Y., Gooch, A., & Gooch, B. (2008, Feb 28 - March 3). The Impact of Game

Design on Students’ Interest in CS. doi:10.1145/1463673.1463680

Reeve, J. (2014). Understanding Motivation and Emotion (6th ed.). Wiley.

Robertson, S. A., & Lee, M. P. (1995, December). The Application of Second Natural

Language Acquisition Pedagogy to the teaching of Progranuning Languages - A

Research Agenda. SIGCSE Bulletin, 27(4), 9-20. doi:10.1145/216511.216517

Rosser, S. (1990). Female Friendly Science: Appiying Women's Studies Methods arid

Theories to Attract students. New York, NY: Pergamon.

Round-robin tournament. (2016, Jan 13). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Round-robin_tournament

www.manaraa.com

 207

Roy, B. C., Frank, M. C., DeCamp, P., Miller, M., & Roy, D. (2015, October 13).

Predicting the birth of a spoken word. PNAS, 112(41), 12663–12668.

doi:10.1073/pnas.1419773112

Roy, D. (2011, March). The birth of a word (Transcript, Minute 06:31). Retrieved from

TED:

http://www.ted.com/talks/deb_roy_the_birth_of_a_word/transcript?language=en

Russell, S., & Norvig, P. (2009). Artifical Intelligence: A Modern Approach (3rd ed.).

Prentice Hall.

Ruthmann, A., Heines, J., Greher, G., Laidler, P., & Saulters, C. (2010, March 10-13).

Teaching Computational Thinking through Musical Live Coding in Scratch.

SIGCSE’10. doi:10.1145/1734263.1734384

Sadée, W. (n.d.). Pharmacogenomics - Using Genetic Information: The Human Genome

Project and SNP Mapping.

Schulte, C. (2012, November 8-9). Uncovering Structure behind Function – the

experiment as teaching method in computer science education., (pp. 40-47).

Hamburg, Germany. doi:10.1145/2481449.2481460

Science Courseware.org, CSU. (n.d.). Geology Labs Online: Virtual Earthquake.

Retrieved from Virtual Courseware: Earthquake:

http://sciencecourseware.org/eec/Earthquake/

SDSC Biology Workbench. (n.d.). Retrieved from UCSD, San Diego Supercomputer

Center, Biology Workbench.: http://workbench.sdsc.edu/

Selinker, L. (1972, Jan). Interlanguage. International Review of Applied Linguistics in

Language Teaching, 10, 209-231. Retrieved from

www.manaraa.com

 208

http://www.degruyter.com/dg/viewarticle/j$002firal.1972.10.issue-1-

4$002firal.1972.10.1-4.209$002firal.1972.10.1-4.209.xml

Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., . . . Brechmann,

A. (2014). Understanding Understanding Source Code with Functional Magnetic

Resonance Imaging. ICSE '14 Proceedings of the 36th International Conference

on Software Engineering, 378-389. doi:10.1145/2568225.2568252

Simms, L., & Thumann, H. (2007, Summer). In Search of a New, Linguistically and

Culturally Sensitive Paradigm in Deaf Education. American Annals of the Deaf,

152(3), 302-311. Retrieved from http://gupress.gallaudet.edu

Skinner, B. (1938). The Behavior of Organisms. New York: Appleton-Century-Crofts.

Smarkusky, D., Propert, P., Stancavage, S., Plociniak, R., Eagan, R., & Nichols, A.

(2011, October 20-22). Physics in Motion: An Interdisciplinary Project.

SIGITE’11, 33-38. doi:10.1145/2047594.2047602

Spohrer, J. C., & Soloway, E. (1986, July). Novice Mistakes: Are the Folk Wisdoms

Correct? Communications of the ACM, 29(7), 624-32. doi:10.1145/6138.6145

STEM + Computing Partnerships Program Solicitation NSF 16-527. (2016, April 3).

Retrieved from National Science Foundation:

http://www.nsf.gov/pubs/2016/nsf16527/nsf16527.htm

Stross, R. (2008, November 16). What Has Driven Woment Out of Computer Science?

New York Times. Retrieved from

http://www.nytimes.com/2008/11/16/business/16digi.html

www.manaraa.com

 209

The Joint Task Force on Computing Curricula, A. (2013, December 20). Computer

Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree

Programs in Computer Science. New York, NY: ACM.

Torrance, N., & Olson, D. (1987). Development of the metalanguage and acquisition of

literacy: A progress report. Interchange, A Quarterly Review of Education, 18(1),

146-146. Retrieved from

http://link.springer.com/article/10.1007%2FBF01807066

Turner, K. (2016, March 17). Why students are throwing tons of money at a program that

won’t give them a college degree. Retrieved from The Washington Post:

https://www.washingtonpost.com/news/the-switch/wp/2016/03/17/why-students-

are-throwing-tons-of-money-at-a-program-that-wont-give-them-a-college-degree/

Watson, C., & Li, F. W. (2014). Failure Rates in Introductory Programming Revisited.

(Innovation and Technology in Computer Science Education (ITiCSE’14) (pp. 39-

44). Uppsala, Sweden: Association for Computing Machinery (ACM).

doi:10.1145/2591708.2591749

Watson, J. (1925). Behaviorism. New York: Norton.

Werner, L., Denner, J., Campe, S., Ortiz, E., DeLay, D., Hartl, A., & Laursen, B. (2013,

March 6-9). Pair Programming for Middle School Students: Does Friendship

Influence Academic Outcomes? SIGCSE '13, Proceeding of the 44th ACM

technical symposium on Computer Science Education, 421-426.

doi:10.1145/2445196.2445322

Willis, A., & Conrad, J. (2008, June). Design Of Intelligent Spacecraft: An

Interdisciplinary Engineering Education Course. Proceedings of the 2008 ASEE

www.manaraa.com

 210

Conference. Retrieved from

http://webpages.uncc.edu/~jmconrad/Publications/ASEE2008_SpacecraftDesignC

ourse_Final.pdf

Wilson, C., Sudol, L., Stephenson, C., & Stehlik, M. (2010). Running on Empty: The

Failure to Teach K-12 Computer Science in the Digital Age. ACM, CSTA.

Retrieved from http://runningonempty.acm.org/

Woolfolk, A. (2004). Educaional Psychology (9th ed. ed.). Boston: Pearson, Allyn and

Bacon.

Yardi, S., Krolikowski, P., Marshall, T., & Bruckman, A. (2008, October 1). An HCI

Approach to Computing in the Real World. Journal on Educational Resources in

Computing, 8(3), 1-20. doi:10.1145/1404935.1404938

www.manaraa.com

 211

APPENDIX A

A CRITIQUE OF THE ECS CURRICULUM

The ECS survey course took as its starting point topics from CSTA's 2004 Level 2

and 2007 Level 3 Objectives and Outlines, part of CSTA's 2003/2006 A Model

Curriculum for K–12 Computer Science, and then filled these "slots" with lessons. In

doing so, the units may have a common theme in the abstract, but their individual pieces

are disparate and unrelated. Absent from ECS's instructional strategies and pedagogy, as

laid out in its Instructional Philosophy, is the key principle underlying the delivery of

content in any mathematics course, or in any field for that matter: building knowledge

concept by concept.

An effective mathematics curriculum focuses on important mathematics that will

prepare students for continued study and for solving problems in a variety of

school, home, and work settings. A well-articulated curriculum challenges

students to learn increasingly more sophisticated mathematical ideas as they

continue their studies. (National Council of Teachers of Mathematics, 2000)

Unit 1

The first unit, Human-Computer Interaction (HCI), opens with a lesson that

familiarizes students with computer hardware, followed by a lesson on Internet searching.

Neither topic is given treatment any different from what one would find in a typical

computer literacy course.

Next follows a "visualizing data" lesson that uses computer tools to explore

geometrical patterns in the crafts of various western Native American tribes. The lesson

is on a web site developed by Ron Eglash that showcases lessons from his work in ethno-

mathematics
19

. The lessons use online software to demonstrate advanced mathematical

concepts expressed in indigenous cultural artifacts. A narrowly constrained image editor

19

 The intersection of math and culture.

www.manaraa.com

 212

allows users to select from a list of image-details drawn from images of the artifacts.

Students are tasked with trying to replicate the designs on a Cartesian grid using an

iterative tool that allows them to input numbers and colors.

The lesson's content is typical of a domain for programming pattern exercises

done at the beginning of several introductory programming courses to flesh out how

nested loops operate. In a programming context, the number of iterations done by the

outer loop is simply the number of lines. The number of iterations done by the inner loop

is calculated from the point-slope form of the equation of a line, which in turn is derived

from a multi-columned Algebra-1 style T-table fitted with line pattern data (See Part 2,

Chapter 2, Section 7). None of these underlying mathematics or CS concepts is even

hinted at; the content of the lesson is simply the domain. Devoid of any programming,

algorithmic or mathematical context, this lesson has no relation to CS.

Pedagogically, students are left on their own to simply guess at ways to generalize

from the patterns (pure discovery), an inefficient and frustrating use of instructional time

and a wasted opportunity to make the mathematical connections. Moreover, an

appropriate starting lesson on iteration would have instead focused on the workings of

single loops, not the complex interactions of nested loops. That students might come

away from this lesson with any coherent concepts, insights or skills, let alone deep

algorithmic understanding, is not credible.

Lastly, and parenthetically, data visualization (the title of the lesson) concerns

itself with information representation: a graphic display of entire datasets – particularly

ones that are non-visual or do not readily lend themselves to visual representations – in

such a way that elucidates non-obvious relationships in the data or its subsets. The lesson

www.manaraa.com

 213

has nothing to do with this topic. The absence of attention to relevance, planning,

designing, and thinking – let alone deep reflection – regarding this lesson is unfortunately

typical of most of the course's disorganized content. Instead, the authors' preferred

method of lesson development is to simply insert material developed by other educators

without modification, adaptation or extension.

What follows next is a primary-school level lesson on sequential commands,

illustrated by tasks such as making a sandwich, taking a gag test, and drawing stick

figures. These might have value as quick engagement activities to illustrate the concept

that a computer is unable to interpret the intent behind incomplete instructions. The

lesson ends without students seeing a computer run programs with such logical bugs.

The unit concludes with another primary-school level lesson, this time on the

Turing test, drawn from CS Unplugged
20

 (Bell, Witten, & Fellows, 2006). Although the

Turing test is historically significant, its present-day value is primarily as a hackneyed,

layman sound bite, warranting only quick mention at the start of a college-level Artificial

Intelligence (not HCI) course:

AI researchers have devoted little effort to passing the Turing Test, believing that

it is more important to study the underlying principles of intelligence than to

duplicate an exemplar. The quest for "artificial flight" succeeded when the

Wright brothers and others stopped imitating birds and started using wind tunnels

and learning about aerodynamics. Aeronautical engineering texts do not define

the goal of their field as making "machines that fly so exactly like pigeons that

they can fool even other pigeons." (Russell & Norvig, 2009)

ECS' authors might have instead chosen a more contemporary (ca. 1999) and topical

reference for AI, e.g. a lesson on a story-generating machine named BRUTUS that uses a

measure called "literary creativity" (Bringsjord & Ferrucci, 2000). A more complex

discussion – and one more rigorously suitable for high school students – of the types of

20

 The curriculum's subtitle is: "An enrichment and extension programme for primary-aged children".

www.manaraa.com

 214

considerations needed to judge the software implementation of an artificial author might

include "weak" vs. "strong" creativity/originality, psychological tests such as the

Torrance Tests of Creative Thinking, and the types of properties one would use to score a

story, such as imagery, style and story structure. Members of the BRUTUS research

team went on to create WATSON, the computer that, in 2011, defeated reigning

Jeopardy champion Ken Jennings.

The first unit contains faulty and irrelevant content choices, confirming earlier

doubts about the subject-matter competency of the authors. Likewise, the use of the title

Human-Computer Interaction for a unit comprising ways that people "interact" with

computers only in the most trivial sense, rather than how HCI is understood in a CS

context, underscores this shortcoming. The unit might actually have been better served

using a true 6-week high school level HCI course that had already been developed at

Georgia Institute of Technology and field-tested on a demographic similar to that of ECS

(Yardi, Krolikowski, Marshall, & Bruckman, 2008)
21

. Finally, the use of unedited and

unadapted primary and middle-school level teaching materials speaks to the authors' lack

of confidence in the capabilities of high school students, especially upperclassmen.

Although ECS was given UCOP "a-g" approval in 2009, nothing in this first unit

remotely qualifies as college preparatory material.

21 The focus of the project-based course was the creation a Touch-Screen Digital Desktop. The researchers

were cautious, however, to characterize this introductory course as computing, not computer science.

www.manaraa.com

 215

Unit 2

The second unit fills another slot in CSTA's Objectives, Problem Solving. The

unit's intent is to introduce students to algorithms. Topics covered are: (1) the handshake

and fencepost problems; (2) the mathematics of cornrow braiding; (3) binary numbers

(CS Unplugged); (4) linear/binary search; (5) sorting algorithms (CS Unplugged); (6)

minimal spanning tree (CS Unplugged).

The unit begins with a lesson that takes students through the "four steps" of

problem-solving after George Pólya's 1945 book Hot to Solve It: A New Aspect of

Mathematical Method. These are: (1) Understand the problem; (2) Make a plan to solve

the problem; (3) Carry out the plan; (4) Review and reflect. Ripped out of context,

however, and presented as an overly simplistic and prescriptive recipe with no more

elaboration than what appears above, the "steps" are useless in practice, insipid trial-and-

error instructions with no more educational value than the instruction "Get out your

pencils." Pólya, a Stanford mathematics professor, had actually laid out a host of

heuristics for solving complex mathematical problems, but crucially assumed extensive

and relevant domain knowledge when attacking new problems.
22

Another troubling problem is that the ECS authors uncritically adopted CSTA's

erroneous assumption that solving problems is a general teachable skill. However, any

credentialed teacher knows from his/her basic Educational Psychology course that the

ability to solve problems is – and algorithms themselves are – highly domain-specific;

22

 The top-down imposition of a recipe-like framework is reminiscent of the popularization of the

"scientific method", which has been called "a type of scientific urban myth", because of the unspoken

assumption of exclusivity while ignoring the principal roles of theory and serendipity in the history of

scientific discovery (Brown & Kumar, 2013). At least the scientific method is actually useful in an

investigative cycle. Observations and/or analysis of data patterns that spur hypotheses that can be tested

experimentally, and have the potential to lead to a predictive understanding of observed phenomena and

theories about underlying realities.

www.manaraa.com

 216

and that good problem-solvers draw upon prior experience and knowledge of particular

domains (Woolfolk, 2004) (Bransford, Sherwood, Vye, & Rieser, 1986). From a

psychological vantage point, problem-solving is a complex phenomenon, described by

Getstalt theorists with notions like "restructuring", "insight" and "entrenchment"; and by

cognitivism with a reliance on domain knowledge and heuristics. In all of these, although

conditions that facilitate the crucial moments of insight can be listed, there are no

satisfactory explanations for how such insights arise. The incubation phenomenon,

setting aside a problem after being unable to find a solution, with a solution later popping

into one's mind (like a forgotten detail that appears after the fact), argues that problem-

solving may be a largely subconscious process.

Another deficiency is that the unit introduces algorithms, but does not ask

students to implement them by writing programs, running them, and modifying them in

order to study the problems in depth and solidify understanding. This is another wasted

opportunity. This flawed pedagogy is by design, as several of the topics are drawn

verbatim from CS Unplugged Teachers Guide, whose subtitle is "An enrichment and

extension programme for primary-aged children". Although any of the CS Unplugged

activities would be plausible as engagement activities at the beginning of a lesson, the

ECS team made no attempt to extend these problems for high-school level students. This

is as irresponsible as teaching Algebra 1 students the content found in a 3
rd

-grade

mathematics course, the antithesis of what the ECS claims to be doing in their

Instructional Philosophy section:

… a curriculum organized around major concepts that students are expected to

know deeply. Teaching must engage students in active reasoning about these

concepts. In every subject, at every grade level, instruction and learning must

www.manaraa.com

 217

include commitment to a knowledge core, high thinking demand, and active use

of knowledge.

When I was involved with ECS in academic year 2009-2010, having attended the

training at UCLA in the previous August, I found inadequate written instructions,

explanations and resources – for both teachers and students – for many of the problems in

the unit. The most overt example was a problem called "Youth Soccer League Activity"

scheduled on Day 5 in ECS versions 1.0 and 2.0. It allowed students 35 minutes to create

a schedule for each of 6 teams to play against every other team twice in as few days as

possible. Instruction beforehand asked only that students calculate how many games

would take place, as if that was all the information required for the solution. They were

then expected to find a solution using pure discovery learning. While preparing the

lesson and naively attempting a solution, after only a few minutes, I found that I was

running into dead ends no matter what I tried. As ECS provided absolutely no

documentation, I turned to the Internet, where I found that the solution – round-robin

tournament scheduling – is neither obvious nor intuitive. The algorithm can create a

schedule of n-1 days for an even number of teams, or n days for an odd number of teams

(Round-robin tournament, 2016). An alternate algorithm uses Berger tables. If one

wanted to make connections, the algorithm also seems to bear some relationship to the

magic square problem often seen in geometry courses. Moreover, the solution for an

even number of teams is different enough from that for an odd number of teams that

students will be unable to extrapolate from one to the other. I devised an Excel

spreadsheet demonstrating the solution for both even and odd cases, emailed both it and a

discussion of the problem to the ECS team, and posted the information on the teacher

support e-board. I heard nothing back. The lesson was dropped in ECS version 3.0.

www.manaraa.com

 218

Chief among Unit Two's drawbacks, starting with ECS version 3.0, is a 3-day

lesson that has nothing to do with CS, and is an astoundingly misguided attempt at

inclusion that instead ends up stereotyping African-American students. The lesson uses

an online ethno-mathematics resource on the fractal nature of cornrow braids (Eglash,

2003), but the lesson is used as-is: the ECS team did nothing to adapt it or show how it

might credibly be related to CS. The impetus to include a lesson with African-American

content is consistent with one of ECS' major strategies, Building on Students’ Funds of

Knowledge and Cultural Wealth. However, the inclusion of this lesson in a CS course is

patronizing and culturally insensitive at best, and naively racist at worst. That ECS

administrators proudly referenced this lesson in an article published in ACM Inroads, a

national CS education magazine, calls into question their judgment
23

 (Margolis, et al.,

2012). Simply put, the lesson is tokenistic, even setting aside its complete absence of

rigor. The not-so-hidden message is that African-Americans' contribution to CS is so

lacking that one's only recourse is to use a mathematics lesson about African fashion

rather than intellectual contributions by black computer scientists. It would be one thing

were such resources unavailable. However, an internet search for "black scientists,

inventors and mathematicians" yields 18,700 results; and the Wikipedia page "List of

African-American inventors and scientists" has no shortage of computer scientists (List

of African-American inventors and scientists, 2016).

This example can be seen as laughable, inappropriate, quite frankly offensive, or

any combination of the above. However, it does have parallels to a similar ideological

battle for how to resolve the issue of disparities in female participation in CS (Part 2,

23

 The most common initial reaction to being shown the article's illustrations was raised eyebrows, with a

follow-up as diplomatically phrased as possible: "Is this a joke?"

www.manaraa.com

 219

Chapter 1, Section 5). Some CS educators have suggested that curricula centered on

story-telling using IDEs like Alice or Scratch be used to attract girls to computing

(Kelleher, Pausch, & Kiesler, 2007). However, others have warned:

The implications are that women do not need handholding or a "female friendly"

curriculum in order for them to enter and be successful in CS or related fields, nor

is there need to change the field to suit women. To the contrary, curricular

changes, for example, based on presumed gender differences can be misguided,

particularly if they do not provide the skills and depth needed to succeed and lead

in the field. Such changes will only serve to reinforce, even perpetuate,

stereotypes and promote further marginalization. (Blum L. , Frieze, Hazzan, &

Dias, 2006)

Historically, the idea for the ECS survey course followed a failed attempt to

increase the number of APCS-A offerings in LAUSD by the Los Angeles based group

Computer Science Equity Alliance (CSEA), started in 2004. The results of this two-year

effort seemed successful on the surface:

The number of courses increased from 11 to 23, and the number of students

enrolled in Advanced Placement Computer Science increased from 225 to 611

students. Not only did the total number of students increase, but also the

enrollment of girls quadrupled, Latinos quintupled, and African Americans

doubled. (Goode, Chapman, & Margolis, 2012)

There is a big difference, though, between participation in a course and successfully

learning its content.

Students who complete AP courses do not necessarily experience success in

college (Geiser & Santelices, 2004). Although taking a course may not improve

student outcomes, the College Board (2005) found a strong correlation between

passing AP exams and having academic success in college. As such, providing

more AP courses in an urban school setting might not automatically ensure better

college outcomes. (Hallet & Venegas, 2011)

As it turned out, CSEA's effort may have simply filled up classes with students who were

academically unprepared – and were almost certainly taught by instructors who lacked

subject-matter competence – as the less-than-forthright admission below acknowledges.

www.manaraa.com

 220

Yet, underlying these increased enrollment numbers was a tension that the

programming-centric focus of the AP course and the advanced, college-level

status was not an accessible point of entry for most students. Three years into this

work, we recognized the need for a foundational high school course introducing

students to the major concepts of the field of computer science, and a course

that had the potential to engage the diverse populations of Los Angeles schools.

(Goode, Chapman, & Margolis, 2012)

The problem with this conclusion is that it is faulty. What is needed to make the

AP course "an accessible point of entry" is not a foundational survey course, but rather a

foundational programming course. Moreover, stating that the authors "recognized a need

for a foundational course" is disingenuous; admitting that they had no idea how to effec-

tively teach high school students to program would have been a more honest assessment.

There is also an inherent pedagogic contradiction in a survey course claiming to intro-

duce the field's major concepts if students have no programming foundation. In a college

sequence, the study of algorithms follows introductory programming for good reason.

Pedagogically, this allows students to implement the algorithms, observe the execution of

the code, and to make permutations that can deepen understanding.

The study of algorithms divorced from programming is also irrational in a

practical sense. Algorithms are ways for machines to accomplish tasks. They provide no

particular insight, value or efficiency for humans performing such tasks manually. Such

concerns are echoed in the literature and are explicitly discussed in a critique of

"unplugged" curricula in Appendix D.

The Goals section of ECS states:

Exploring Computer Science is designed to introduce students to the breadth of the field

of computer science through an exploration of engaging and accessible topics….The goal

of Exploring Computer Science is to develop in students the computational practices of

algorithm development, problem solving and programming within the context of

problems that are relevant to the lives of today’s students.

www.manaraa.com

 221

Rather than "breadth", though, the algorithms in Unit 2 have simply been dissected out of

end-of-unit problem sets in a first year college programming curriculum. As such, they

are isolated domains with no particular relevance to CS, chosen by their original authors

because their optimal solutions were opportunities for applying the particular PL

concepts being studied.

That criticism aside, though, no thought seems to have been given as to what

educational value they might have as standalone topics when taught to students who have

no programming experience. To illustrate, the study of sorting algorithms can deepen

understanding of the tension between memory space and theoretical execution time.

Outside of this context, sorting algorithms and methods are hardly pressing 21
st
-century

concerns. Additionally, minimal spanning trees certainly have their uses in engineering

applications, but they do nothing to expose students to the breadth of algorithmic

applications used in contemporary subfields of CS. Similarly, the fencepost and

handshake problems are exercises one might find at the end of an initial chapter in a mid-

20
th

-century introductory programming course, hardly major topics in any case.

Rather one might better argue that the most compelling contemporary topics in

CS are found in disciplines like Artificial Intelligence, Big Data, Machine Learning and

Bioinformatics. Concepts like gene discovery or gene assembly, neural networks,

predicting social behaviors, genetic algorithms and computer vision might be better

candidates for a non-programming survey course intended to generate 21
st
-century

interest… but not competence. Indeed, it would be beyond the capabilities of non-

programming students to understand the workings and theoretical underpinnings of a

single perceptron, let alone a neural network. Designing a persuasive and rigorous high

www.manaraa.com

 222

school (or college-level, for that matter) survey course is not as simple as whittling down

an introductory programming course.

Unit 3

The Web Design unit is the one unit in the course with grade-level content. It is

well-thought out and sequenced, introducing students immediately to web-related social

and security issues, and then to the technical nuts and bolts: the programming systems

HTML, CSS and Javascript; the production tools Photoshop and Lightbox; and ready-

made scripts for accordion menus and sliding images. The only criticism, and a serious

one, is that – per Jan Cuny's criterion for distinguishing computer literacy from computer

science (Cuny, 2011) – the unit is about being a consumer/user of technology production

software, and not about being a technology creator. Compressed into six weeks, it's not

credible to believe students will be able to understand HTML, CSS or Javascript on

anything but a shallow level, let alone that they will be able to independently design, or

build programming code, into web pages.

Unit 4

Unit 4 is an introductory programming unit. The decision to use Scratch to

introduce programming to high school students immediately precludes them from

learning about methods, parameters and hierarchical program organization (topics which

students in my freshman pre-AP programming course begin delving into the first week).

The programs students work on are games and storytelling; there is no application or

connection to real world problems or situations. The content is middle-school level, at

www.manaraa.com

 223

best. Even so, there can be no realistic expectation that students will learn the uses of

variables, conditionals, boolean logic, or timers in any depth or complexity in 7 weeks.

There is no attempt to teach iteration, recursion or classes/objects, although in earlier

versions, iteration and lists were taught in a later Python unit.

Unit 5 (versions 2.0, 3.0) / Unit 6 (versions 4.0, 5.0)

The Robotics programming curriculum used in Unit 5 was designed by a middle-

school teacher (Michelle Hutton, The Girl’s School, Mountain View, CA) for 8
th

 grade

students. It's excellent, for middle-school students.

Unit 6 (versions 2.0, 3.0) / Unit 5 (versions 4.0, 5.0)

Unit 6 has gone through several incarnations. In the 2009 ECS 2.0 version it was

a Python programming unit, translated virtually verbatim from the first lessons of the ICT

APCS-A curriculum, for which LAUSD has a district-wide license. This is a serious

programming unit, with ambitious, but unrealistic, goals for teaching in 6 weeks(!) what a

typical APCS-A course might take a full semester to teach in depth. What the ECS team

soon found out is that Python has a steep learning curve and comes with a not so user-

friendly IDE. In two year-long periods (2005-6, 2008-9) of teaching Python to 15-year-

old high school students, one study concluded:

… the same factors that have made Python such a successful programming

language in the market have presented our students with specific learning

obstacles…

…Our experience shows that the success of a language in a professional setting

does not predict success as a teaching tool. (Konidari & Louridas, 2010)

www.manaraa.com

 224

It was no surprise when Python disappeared from ECS two years later, replaced in

versions 4.0 and 5.0 by a "Computing and Data Analysis" unit. The software used is

described in an ECS proprietary manual:

Deducer is a graphical interface designed to work with R (a free, data analysis

software environment for statistical computing and graphics) and allow users to

perform data analysis without programming. The underlying language of R can be

seen at each step, which enables students to learn about R if they are interested,

but typing R commands at the command line is not required.

The topics in the unit utilize elementary statistical concepts, plots, maps, histograms and

the like, analyzing many kinds of data, including text. As with the Web Design unit, this

unit falls under the category of literacy and production, not technology creation, as

students simply use the software to analyze data, rather than writing R programs. This

would be a good unit in a mathematics curriculum to showcase real-world applications

for statistics concepts, but, as in Units 1 and 2, the topics are not appropriate content for a

computer science course.

www.manaraa.com

 225

APPENDIX B

THE INFLUENCE OF THE APIG ON CSTA POLICY

The APIG managed to carve out a seat for itself in the CSTA, as evidenced in

their 2011 publication CSTA K-12 Computer Science Standards (CSTA Standards Task

Force, 2011). Just as literary analysis of the Bible uncovers different groups of authors,

Standards reveals at least two sets of author groups in the last ten years, with polar

opposite philosophical views on the role of programming in the secondary CS

curriculum. On the one hand, section 2 of Standards initially attests to the central and

motivating force of programming:

Children of all ages love computing. When given the opportunity, young students

enjoy the sense of mastery and magic that programming provides. Older students

are drawn to the combination of art, narrative, design, programming, and sheer

enjoyment that comes from creating their own virtual worlds. Blending computer

science with other interests also provides rich opportunities for learning. Students

with an interest in music, for example, can learn about digital music and audio.

This field integrates electronics, several kinds of math, music theory, computer

programming, and a keen ear for what sounds beautiful, harmonious, or just plain

interesting. (p. 2)

This paragraph was copied verbatim from an earlier publication, CSTA's

2003/2006 A Model Curriculum for K–12 Computer. This passage, together with one

from Model Curriculum's foreword (p. V) – also repeated in Standards, Section 2.5,

"Computer Science Can Engage All Students" – makes clear that K-12 CS is about

teaching students to program:

Pedagogically, computer programming has the same relation to studying

computer science as playing an instrument does to studying music or painting

does to studying art. In each case, even a small amount of hands-on experience

adds immensely to life-long appreciation and understanding, even if the student

does not continue programming, playing, or painting as an adult. Although

becoming an expert programmer, a violinist, or an oil painter demands much time

and talent, we still want to expose every student to the joys of being creative. The

goal for teaching computer science should be to get as many students as possible

www.manaraa.com

 226

enthusiastically engaged with every assignment. Instead of writing the same old

mortgage calculation program, have students design and write programs that

control their cell phones or robots, create physics and biology simulations, or

compose music. Students will want to learn to use conditionals, loops, and

parameters and other fundamental concepts just to make these exciting things

happen. (p. 5)
24

In section 4.2 (Strands), however, an anti-programming philosophy

unprecedented in CS education is articulated:

Almost since its inception, computer science has been hampered by the perception

that it focuses exclusively on programming. This misconception has been

particularly damaging in grades K–12 where it often has led to courses that were

exceedingly limited in scope and negatively perceived by students. It also fed

into other unfortunate perceptions of computer science as a solitary pursuit,

disconnected from the rest of the world and of little relevance to the interests and

concerns of students.

We address these concerns by distinguishing five complementary and essential

strands throughout all three levels in these standards. (p. 9)

Interestingly, the authors cite no research studies to support a causal relationship between

programming as exclusive subject matter content and the so-called "damage" they allege,

which, though unstated, includes persistently low enrollments and severe demographic

disparities. Propped up with nothing more than opinion, belief and underlying agenda
25

to justify it, this alternative stance initiated a radical shift away from the central role of

programming in CS secondary education.

Although the two points-of-view could hardly be more contradictory, the authors

of Standards make no attempt to reconcile the competing narratives. Instead, they simply

24

 To those who have actually taught secondary CS, this last statement is wishful thinking, conditional on

the academic readiness of the student. With near unanimity, students below grade-level have great

difficulty learning to program.

25

 The agenda being that the authors could conceive of no framework for how to effectively teach

programming to most grade-level secondary students.

www.manaraa.com

 227

coexist as a philosophical and political contradiction, notwithstanding the schizophrenic

implications for inconsistent and antithetical policies.

The authors of Standards do not cite evidence of causation (or even correlation)

between programming and the negative K-12 outcomes they claim occur because none

exists. There is evidence at the postsecondary level, however, suggesting that (a) pedago-

gical strategies, e.g. not providing useful contexts for introductory programming concepts

and skills, may be detrimental; and (b) a social/educational micro-environment inclusive

of traditionally underrepresented students is helpful (Blum L. , Frieze, Hazzan, & Dias,

2006). Two colleges have, in fact, successfully reversed their gender imbalances using

such strategies. The CS department at Carnegie-Mellon University (CMU) made several

alterations: (a) it changed its admissions policies by deemphasizing prior programming

experience; (b) it provided social support for female students; (c) it offered different

introductory courses for students consistent with the degree of prior programming

experience; and (d) it eventually began to provide contexts for introductory programming

concepts by showing examples of their application in the world at large. Harvey Mudd

College (HMC) has created different tracks for its beginning students based on prior

programming experience and modified its introductory courses so that the subject matter

occurs within broader contexts, with less emphasis on the nuts and bolts of programming

(Alvarado & Dodds, 2010). A third HMC introductory course frames instruction within a

biological context. Similar strategies are unlikely to have a similar impact at less elite

colleges. Secondary sites, though, are even less likely to benefit from such practices.

www.manaraa.com

 228

APPENDIX C

THE APIG'S IMPACT ON CSTA'S CURRICULAR FRAMEWORK

The anti-programming pronouncement that appears in Standards (Appendix B) is

accompanied by a curricular model consistent with that ideological position. Features of

the original framework that it replaced, articulated in Model Curriculum, are summarized

below:

As a basis for describing a model curriculum for K–12 computer science, we use

the following definition of computer science as an academic and professional

field.

Computer science (CS) is the study of computers and algorithmic

processes, including their principles, their hardware and software

designs, their applications, and their impact on society.

In our view, this definition requires that K–12 computer science curricula have

the following kinds of elements: programming, hardware design, networks,

graphics, databases and information retrieval, computer security, software design,

programming languages, logic, programming paradigms, translation between

levels of abstraction, artificial intelligence, the limits of computation (what

computers can’t do), applications in information technology and information

systems, and social issues (Internet security, privacy, intellectual property, etc.).

(p. 2)

Section 3 of Standards at first reiterates its support for this rigorous and traditional

definition:

Computer Science, on the other hand, spans a wide range of computing

endeavors, from theoretical foundations to robotics, computer vision, intelligent

systems, and bioinformatics. The work of computer scientists is concentrated in

three areas:

• designing and implementing software,

• developing effective ways to solve computing problems, and

• devising new ways to use computers.

For the purposes of this document, we rely heavily on the definition of computer

science [above, previous citation] provided in the original ACM/CSTA Model

Curriculum for K–12 Computer Science, as we believe that this definition of

www.manaraa.com

 229

computer science has the most direct relevance to high school computer science

education. (p. 6)

…If these standards are widely implemented and these goals are met, high school

graduates will be prepared to be knowledgeable users and critics of computers, as

well as designers and builders of computing applications that will affect every

aspect of life in the 21st century.

However, section 4 of Standards, in contrast, proposes a much simplified and

poorly-conceived framework of five curriculum strands
26

: (1) Computational Thinking,

(2) Collaboration, (3) Computing Practice and Programming, (4) Computers and

Communication Devices, and (5) Community, Global, and Ethical Impacts. The most

significant change to the earlier traditional model occurs in the 3
rd

 strand, Computing

Practice and Programming, and is described in Section 4.2.3. Here, the anti-

programming camp seems to have succeeded in its quest to have CSTA remove

programming from its central position in secondary CS education:

The use of computational tools is an essential part of computer science education

at all levels. While this is traditionally branded as “Information Technology,” it is

impossible to separate IT from the other four strands in computer science.

Computing practice at the K–12 level must therefore include the ability to create

and organize web pages, explore the use of programming in solving problems,

select appropriate file and database formats for a particular computational

problem, and use appropriate Application Program Interfaces (APIs), software

tools, and libraries to help solve algorithmic and computational problems.

…Because computing is often misperceived as only programming, it is especially

important for students to understand the broad array of opportunities computer

science knowledge can provide across every field and discipline. (p. 11)

Programming in now subsumed under a broader Computing Practice heading as just one

activity among many, in which students are to merely "explore the use of programming in

26

 A curriculum strand, in the language of K-12 education, is a content area that is vertically aligned, i.e.,

where student knowledge is revisited, grows and deepens over the course of several grade levels. The

National Council of Teachers of Mathematics (NCTM) has devised an exemplary model spanning the K-12

period – from counting through pre-Calculus – consisting of 10 strands (which they call standards):

Number and Operations, Algebra, Geometry, Measurement, Data Analysis and Probability, Problem

Solving, Reasoning and Proof, Communication, Connections, and Representation.

www.manaraa.com

 230

solving problems", as opposed to acquiring competence in the use of one or more

programming languages. Practice is characterized as the use of "computational tools,"

later characterized in the sections detailing the specific standards as "web programming

design tools" or "productivity/multimedia tools", tasks that fall under the realm of

Computer Literacy. Completely absent is any mention of teaching programming basics.

And no mention is made for how students will use "Application Program Interfaces

(APIs)" and "libraries" in the absence of high-level programming instruction.

In addition, the section again warns – in case the reader missed it earlier – that

"computing is often misperceived as only programming", claiming further – and

incorrectly – that "it is impossible to separate IT [i.e. programming] from the other four

strands in computer science." This is sheer nonsense; the dependency, in fact, runs in the

opposite direction. Programmability is universally acknowledged to be the core activity

that enables and informs other CS topics.

The strand Computational Thinking deserves some mention. In section 4.2.1, the

authors acknowledge "that there is, as yet, no widely agreed upon definition of

computational thinking," yet plow ahead with one recently developed:

CT is an approach to solving problems in a way that can be implemented with a

computer. Students become not merely tool users but tool builders. They use a

set of concepts, such as abstraction, recursion, and iteration, to process and

analyze data, and to create real and virtual artifacts. CT is a problem-solving

methodology that can be automated and transferred and applied across subjects.

The power of computational thinking is that it applies to every other type of

reasoning. It enables all kinds of things to get done: quantum physics, advanced

biology, human–computer systems, development of useful computational tools.

The first sentence explicitly connects CT to implementation (i.e. programming) and

limits its application to computers: this sounds a lot like programming. However, the

paragraph subsequently makes the broad claim that CT can be applied "to every other

www.manaraa.com

 231

type of reasoning," though what this means even in an inexact way is unclear. At the

section's outset, a similar unsupported claim is made: "The study of computational

thinking enables all students to better conceptualize, analyze, and solve complex

problems by selecting and applying appropriate strategies and tools, both virtually and

in the real world" (p. 9). These statements have several false implications.

Consider the application of CT to the task of sorting a deck of cards. A person

using any of the sorting algorithms in the CS canon would be ignoring the vastly greater

sensory input, brain power, and strategies people have at their disposal for doing such

tasks. An iterative or recursive solution makes up for the computer's deficits in these

areas. For a person to sort a deck of cards using a computing algorithm would amount to

a colossal and inefficient waste of time repeating comparisons of cards many fold times

more than required. Furthermore, if a problem were so huge or complex that only a

computer solution could reliably solve it, it's unlikely a person or team of people could

perform the same operations without error and within a reasonable period of time.

Even when the authors state that CT can be applied to a particular problem, they

wade cavalierly into territory outside their expertise. Model Curriculum states:

Students should be able to use computer science skills (especially algorithmic

thinking) in their problem-solving activities in other subjects. One simple

example is the use of logic for understanding the semantics of English in a

language arts class. There are many others.

In reality, computational linguistics is far from simple. While problems in phonology

and syntax are amenable to algorithmic solutions, those in semantics are actually not so

easily solved. Semantic algorithms would make little sense in a 21
st
-century curriculum

because they have been abandoned in favor of machine learning techniques. The latter

www.manaraa.com

 232

uncover patterns in huge datasets of structured and unstructured language assembled

from a wide range of contexts.

However, the main problem with the definition is the claim that CT can enhance

problem-solving, reasoning and general thinking ability, outside of the specific context of

computer programming. This is echoed in section 5.1 (Level 1 standards):

We agree with teachers who believe that students at this age ought to begin

thinking algorithmically as a general problem-solving strategy. Thus, it makes

sense to develop more teaching strategies that encourage students to engage in the

process of visualizing or acting out an algorithm. Seymour Papert’s pioneering

experiments in the 1970s corroborate this belief, and his seminal work

Mindstorms and related curricula provide many more examples of how

elementary students can be engaged in algorithmic thinking. (p. 12)

Papert's book appeared in 1980, followed shortly by others (Bork, Nickerson) making

similar claims. However, one research study carried out a few years later to test these

claims could establish no such correlation (Mayer, Dyck, & Vilberg, 1986). Instead, this

study criticized Papert's reliance on "case studies and testimonials" – as opposed to

experiments or research – and stated that "there have been very few relevant research

studies and almost no convincing support of this connection." Specifically, these

researchers debunked three assertions:

1. Learning a programming language will enhance a person’s thinking skills

2. Certain thinking skills will enhance the learning of programming

3. Pre-training on certain thinking skills will enhance the learning of programming

Other research studies also revealed that "problem-solving skills appear to be

much more discipline specific than had first been thought" (Linn & Dalbey, 1985).

When enhancement was found, it did not impact problem-solving ability: "Logo

programmers outperformed other students on meta-cognitive tasks but showed no

www.manaraa.com

 233

differences in areas of cognitive development or logical thinking" (Martin & Hearne,

1990).

Claims for augmenting problem-solving ability are reminiscent of 19
th

-century

"mental discipline", a theory that employed both "mind-as-a-muscle" and "transfer of

training" metaphors. Edward Lee Thorndike was the first to disprove "mental discipline"

in a 1901 publication summarizing experiments that failed to show such transfer; he

concluded: "Improvements in any single mental function need not improve the ability in

functions commonly called by the same name" (Kliebard, 2004). Although the principle

of "mental discipline" had been a mainstay of American education throughout the 19
th

century, it soon lost credibility.

The idea that CT can improve or aid the thinking process is further belied by the

fact that the activity is difficult to perform correctly even in its native domain; the code-

test-debug software engineering cycle amply testifies to the difficulty that even

experienced programmers have when trying to code straightforward programs correctly.

Simply stated, CT is an unnatural way of thinking, its sole raison d'être being to train

programmers to write software programs that computers, with their constrained set of

operations, can execute to solve problems that are beyond human capabilities and

limitations. It has little to no value or application outside of the context of CS.

That the authors of Standards make such a general claim so cavalierly might be

forgivable if not for "problem solving" being a major topic in standard Educational

Psychology classes, and one that every credentialed K-12 teacher studies. Discussions in

such courses about successful problem solving underscore: (a) the importance of domain

specific knowledge; (b) the ability to access portions of that knowledge relevant to the

www.manaraa.com

 234

problem at hand; and (c) the fact that algorithms are domain-specific, and that many/most

problems are not solvable by application of algorithms (Woolfolk, 2004) (Bransford,

Sherwood, Vye, & Rieser, 1986).

The decision to put forward Collaboration as a strand is bizarre. First,

"collaboration" as understood in a university CS context involves human-computer

interaction (HCI), specifically interfaces that facilitate online interaction and

communication (The Joint Task Force on Computing Curricula, 2013). It is not group

work independent of computer networks. Second, collaboration in a secondary setting is

a pedagogic strategy – not academic content – and one commonly employed in K-12

classrooms irrespective of subject area. Although collaborative strategies are mentioned

in the CTE Anchor standards and the Common Core ELA Speaking and Listening

standards, the goals are neither content-related nor teamwork, but rather "building on

others’ ideas and expressing their own clearly and persuasively". In this context,

collaboration is just one of many learning skills to support academic learning. The skills

are not subject specific in the slightest.

The authors also make two specious claims: (a) "significant progress is rarely

made in computer science by one person working alone"; and (b) "new programming

methodologies such as pair programming emphasize the importance of working together"

(Section 4.2.2, p. 10). The first assertion is contradicted by the hardly "rare" and well-

known examples of individuals who have conceived innovative ideas, and then founded

and grew major start-ups (e.g. Jobs, Gates, Zuckerberg). New insights and theories

invented by academics and theoreticians (Turing, Dijkstra, Hopper) were again individual

efforts. The second assertion about "pair programming" in both industrial and

www.manaraa.com

 235

educational contexts ignores mixed findings about its effectiveness, and the particular

circumstances under which it demonstrates advantages. As stated at the end of Part 1,

Chapter 2, Section 1, there are no studies showing the effectiveness of pair programming

in secondary classrooms
27

. Proposing Collaboration as a strand is an inept attempt to fill

the void created by the unnecessary removal of programming competence with a "strand"

entirely devoid of academic content.

27

 The same section cited recent studies showing benefits for middle-school students under many pairing

conditions – and particularly so when the two participants are friends – but not all (Werner, et al., 2013)

(Denner, Werner, Sampe, & Ortiz, 2014).

www.manaraa.com

 236

APPENDIX D

THE APIG FALLACIES OF COMPUTER-FREE CS INSTRUCTION

CSTA's current standards model is divided into 3 levels: Level 1 Grades K-6,

Level 2 Grades 6-9, and Level 3 Grades 9-12. It's unclear what basis the authors have for

creating standards for Levels 1 and 2, when experience with teaching CS at these pre-

secondary levels is sparse. Consider Standard 2 for Computational Thinking, Level 1,

Grades 3-6 (L1:6:CT):

2. Develop a simple understanding of an algorithm (e.g., search, sequence of

events, or sorting) using computer-free exercises.

This standard was inspired by the popular Computer Science Unplugged: An enrichment

and extension programme for primary-aged children (Bell, Witten, & Fellows, 2006), an

elementary curriculum that decouples the learning of algorithms from computer

programming. However when this curriculum was taught to middle and secondary

students, it was found wanting:

For CS unplugged activities are some evaluative reports available: Feaster et. al.

([10], p.252) conclude that “the program had no statistically significant impact on

student attitudes toward computer science or perceived content understanding.”

Taub et.al. [35] yield similar results (p.24) and found the following explanation

(similar to [36]): “only some of the objectives were addressed in the activities,

[…] the activities do not engage with the students’ prior knowledge and […] most

of the activities are not explicitly linked to central concepts in CS” (p.1) …

(Schulte, 2012)

By the same token, CS professors at Harvey Mudd College who authored a middle school

curriculum (MyCS) using certain aspects of CS Unplugged cautioned:

MyCS requires no resources other than a computer lab. Many of its activities,

inspired by CS Unplugged, do not even require a lab of machines, though we do

not believe the skill-building necessary for the development of a justifiably

confident computational identity is possible without hands-on creation at a

computer. (Dodds & Erlinger, 2013)

www.manaraa.com

 237

Comments like the above illustrate the tendency – perhaps desperation – of CS

educators for novel teaching strategies before their effectiveness has been corroborated

by research. Moreover, there are two objections one could make to the CS Unplugged

approach solely on principle: (1) virtually all students enter a computer class hungry to

extend their knowledge and gain new skills and competencies; one would need very

convincing pedagogic reasons to set aside this natural inner motivation in order to

purposely forego the use of a computer when teaching computer-related concepts; and

(2) computer-free activities are not ends in themselves, but rather starting points to

engage students in acquiring new concepts and skills, especially in a setting beyond

primary school.

Advocates of computer-free instruction often utilize a quote attributed to Edsger

Dijkstra, a preeminent computer scientist, who said: "Computer science is no more about

computers than astronomy is about telescopes." The quote actually originated in an

article by two computer scientists at the University of British Columbia (Fellows &

Parberry, 1993) and was originally intended to remind its audience about the foundation

of discrete mathematics underlying much of theoretical CS. Notwithstanding, the article

did make two claims: "Science is not about tools. It is about how we use them and what

we find out when we do" and "computer science is not about computers – it is about

computation."

This exclusionary logic, however, is debatable. In his seminal work, The

Structure of Scientific Revolutions, Thomas S. Kuhn recognized the crucial role of

instrumentation for scientific discovery and the development of theories to account for

experimental anomalies: "The decision to employ a particular piece of apparatus and use

www.manaraa.com

 238

it in a particular way carries an assumption that only certain sorts of circumstances will

arise. There are instrumental as well as theoretical expectations, and they have often

played a decisive role in scientific development." (Kuhn, 1996). In other words, science

is not entirely an abstract realm existing independently of the tools it uses for exploration.

Tools construct and frame the conceptual structure in which scientists think about their

discipline. Certainly in astronomy, the development of increasingly sophisticated

telescopes and the collection of the particular types of observations/data that they are able

to detect – often obtained and interpreted by software – constrain and inform the types of

ideas that are generated. Similarly in CS, the evolution of progressively more complex

computers and peripherals has spurred the birth of ever new sub-disciplines in the field

(e.g. parallel computing, computer graphics).

It is worth repeating Taub's criticism of CS Unplugged that "most of the activities

are not explicitly linked to central concepts in CS." The twelve activities in CS

Unplugged, although topics that may be addressed somewhere in the first two years of a

university CS program, have little connection to one another, are presented with little

depth, and their contexts/applications are simplified academic exercises of trivial value.

They certainly form no cohesive whole and one wonders about the value in teaching

students such content and the prospects for retention if they will not re-encounter and

build on the topics on a regular basis.

As an example, consider the decision to include binary numbers in this

curriculum. While certainly important when presenting such concepts as round-off error,

bit operations on image data, and compression, CS Unplugged's "Secret Message"

activity for practicing binary-to-decimal conversion has no real-life counterpart. The

www.manaraa.com

 239

authors were apparently unwilling to use binary numbers greater than 31, which

effectively ruled out even the trivial mention of its connection to the ASCII code. Had

they done so, students might have discovered binary patterns, such as the bit that

distinguishes uppercase letters from lower-case ones. One wonders, then, about the

authors' reasons for its inclusion. Those who experienced the "New Math" curricula of

the 1960s might remember practicing similarly useless base-conversion lessons

("inspired" by computer architecture) that existed in isolation from the rest of the math

curriculum. Even worse, in addition to practicing conversions with bases 2 and 8,

exercises also included superfluous bases like 3-7 and 9.

As an alternative, what might be the objection to postponing CS study proper until

later grades, and instead direct efforts towards students acquiring proficiencies in

Computer Literacy (CL) areas. As it stands, there is already much room for greater rigor

in CL education, as current curricula limit themselves to teaching office and multimedia

productivity software and Internet skills. For a start, one might imagine including

software applications that not only support, but extend what students already learn in

their science and math classes, using educational software like Geometer's Sketchpad or

GeoGebra, Biology Labs On-Line, and Virtual Courseware for Earth and Environmental

Science, or actual science tools such as SDSC Biology Workbench, MEGA6 (Molecular

Evolutionary Genetics Analysis) and the NCBI biomedical and genomic databases. By

doing so, instructors might generate in their students an appreciation for the crucial role

CS currently plays in subfields of other disciplines.

www.manaraa.com

 240

APPENDIX E

DIFFERENCES BETWEEN NATURAL AND PROGRAMMING LANGUAGES

Some of the differences between natural languages (NLs) and programming

languages (PLs) are discussed below:

Vocabulary

Although NLs evolve over time, they have a large, fixed lexicon. PLs, on the

other hand, contain an exceedingly small set of reserved words, but an infinite set of non-

standardized identifiers (lexical items). "Non-standardized" means that names of specific

syntactic items (variables, methods, classes, etc.) can be invented at the whim of the

individual programmer, along with their meaning (semantics) within the context of the

program.

Intelligibility

Utterances in a single NL are understood by all of its speakers. In contrast, a PL's

non-existent lexicon means that programs written using the synthesized idiosyncratic

vocabulary of one programmer may be unintelligible to other readers. This necessitates

the teaching of compiler-unenforced programming style recommendations such as

programming principles, program organization, naming and indentation conventions, and

other types of guidelines.

Purpose

NLs facilitate two-way communication for any human purpose. A pidgin is a

utilitarian, rump language made up of elements of two or more natural languages, spoken

by no one as a mother tongue, and used as a common, intermediary language for either

basic communication or a specific purpose (e.g. trade). A high-level PL occupies such a

www.manaraa.com

 241

middle space between human and machine language and functions primarily as a

unidirectional pidgin for humans to write instructions for computers to compile and

execute, with due attention given to writing a well-organized program that other humans

can read with little difficulty. One discerns the quality of the program logic not by a

language response, but by the computer's behavior (i.e. output). Runtime output by itself,

however, provides no insight into the quality of the program's organization.

No Spoken Analogue

A NL is acquired without conscious effort simply by listening and speaking. Its

written form is – at the most basic level – a notational system for encoding the spoken

language
28

. Although acquiring reading and writing skills requires substantial effort, the

implicit precondition is that the corresponding spoken language already exists in a

learner's brain. In an L2 learning process, although the spoken language does not already

exist in a learner's brain, the student still has recourse to: (a) initially map L2 features and

vocabulary onto an existing first language (L1) structure, and (b) use spoken L2 input as

a source of new data in the building of writing and reading skills.

A PL has no spoken counterpart. Learning to read and write a language without

speaking proficiency – and the accompanying and extensive prior knowledge of the

language – is not a trivial task. The closest analogy is arguably Deaf students learning a

hearing (non-signed) language. Deaf students in the United States learn English as a

second language almost exclusively through literacy. Because they have limited or no

access to auditory and oral data, they must instead mediate the building of English skills

using their native language, American Sign Language (ASL). As might be expected of a

28

 A written language's most comprehensive form can be said to be an expansive version of the total

linguistic knowledge of all of the speakers – past and present – of the standard dialect.

www.manaraa.com

 242

task that is many times more difficult than for their hearing counterparts, Deaf students

have historically had low achievement in reading and speaking (as well as in

mathematics, employment and earning levels) (Simms & Thumann, 2007). These

difficulties echo the high failure rates of CS1 students. Interestingly, Deaf educators

often refer to the situation of hearing ESL learners as analogous to that of Deaf students

learning English (Berent, Kelly, & Porter, 2008). Nonetheless, a minority of Deaf people

are able to achieve native or near-native fluency in written English. A strong correlation

between proficiency in ASL and English literacy has repeatedly been demonstrated

(Kuntze, 2004); and studies looking at the limitations of attempting to learn a writing

system with no access to its language system have consistently emphasized the impor-

tance of "mastery of a primary language" (i.e. ASL) for achieving reading competence in

a second language (Perfetti & Sandak, 2000). Qualitative research has identified possible

conditions and strategies that may help Deaf children become literate, but no conjectures

have been articulated to explain how this might occur (Mounty, Pucci, & Harmon, 2014).

A PL is Visual Language

If a PL has no spoken counterpart, that is, if it exists only in written form, then the

corollary is that it is a visual language, like ASL. An alternate way of saying this is that a

PL is a spatial language. ASL is mediated by a 3-dimensional space. A PL exists in two

dimensions on a flat surface, and the spatial arrangement of components can encode

meaning. The clearest example is using a systematic indentation scheme to delineate

scope, mandatory in Python, and optional in languages that utilize braces to bracket

blocks of statements, but which greatly enhances semantic clarity and organization.

www.manaraa.com

 243

One of the chief properties of space is direction, and ASL makes extensive use of

this characteristic. One key use of direction is the representation of time: a forward

motion of the palm signifies future tense while a backwards motion indicates past tense.

Or, were a speaker to sign about an interaction with a friend, he/she might set up a point

in space to represent the friend, then directionally sign the verb "give" by moving a hand

from that point to oneself (or vice versa) to indicate the subject and object. In most PLs,

the clearest use of direction is the assignment statement: a quantity evaluated on the right

side of an equal sign is assigned to a variable on the left. Interestingly, the operators <-

and -> in the R programming language allow for both leftward and rightward

assignment, respectively.

Spatially Non-Linear

NLs consist of a temporally sequential phonological signal, that is, meaningful

language units follow one after another. The signal in spoken NLs is auditory and the

units are phonemes and morphemes. The visual signal in signed NLs is likewise

sequential, but the language units are signs, and the phonological components are

handshape, location, movement and orientation. What is different, however, is that

signed NLs also utilize space. "Time is arguably the primary foundation for audition,

with sounds changing rapidly in particular ways over time, whereas space is the primary

referent for vision, with visual objects defined by size and shape." (Conway, Karpicke, &

Pisoni, 2007).

The auditory signal in a spoken NL is temporally linear, as is its written form.

The sequence of signs in a visual signal for a signed NL is also temporally linear, but

spatially non-linear as individual signs are constructed utilizing all directions of a 3-D

www.manaraa.com

 244

space. Likewise, reading a PL is temporally linear. However, they are also spatially non-

linear because programs can be (should be) organized hierarchically,. Method calls, for

example, require positional jumps to other locations, with eventual returns to the

jumping-off point. The same might be said to a lesser degree of loops, particularly when

they contain conditional statements.

Precision

Because much of the meaning in speech is derived from context, NLs can be

spoken imprecisely and ungrammatically – with half-completed sentences and changes of

direction – and yet still be comprehensible. Although the intent of a program may be

completely clear to other programmers, minute syntax errors will introduce either logical

or compiler errors. Certainly intelligent compilers can be built to correct many such

errors, but as things currently stand, machines cannot implement a programmer's intent or

meaning without properly formed syntactic markers. This does not mean, however, that

one programmer's bug-filled code will necessarily be unintelligible to another.

Semantics

The number of syntactic features in NLs is at least an order of magnitude larger

than the number of syntax structures in PLs, which number around a dozen. Syntactic

elements also carry a semantic component. In English, for example, the suffix "-ed" and

its variants are verbal markers for past tense. Because syntactic components in a PL are

much fewer in number, they are semantically much more diffuse and ambiguous. As an

example, the meaning of an if-statement is the overly broad concept "conditionality".

One mechanism PLs employ to compensate for their amorphous semantics and to

narrow down statements to specific functionalities/meanings is by assembling

www.manaraa.com

 245

combinations / blocks composed of primitive syntactic components. For maximum

intelligibility, these blocks may be encapsulated into methods with user-defined names

and reused as if they were primitive elements themselves. PLs thus not only allow for the

creation of vocabulary items, but for new syntax elements as well.

Due to the strikingly different ways that NLs and PLs handle syntax, there are

virtually no syntactic components in NLs that have PL counterparts. The impact on

students is that one very early, crucial and often-used L2 learning strategy – reference to

analogous syntax structures in L1 – is simply not available to students learning a PL.

Each and every syntax component in a PL is foreign in all senses of the word.

